Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Am J Epidemiol ; 187(9): 2038-2045, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29767676

RESUMO

"Complete streets" policies require transportation engineers to make provisions for pedestrians, bicyclists, and mass transit users. These policies may make bicycling safer for individual cyclists while increasing the overall number of bicycle fatalities if more people cycle due to improved infrastructure. We merged county-level records of complete streets policies with Fatality Analysis Reporting System counts of cyclist fatalities occurring between January 2000 and December 2015. Because comprehensive county-level estimates of numbers of cyclists were not available, we used bicycle commuter estimates from the American Community Survey and the US Census as a proxy for the cycling population and limited analysis to 183 counties (accounting for over half of the US population) for which cycle commuting estimates were consistently nonzero. We used G-computation to estimate the effect of complete streets policies on overall numbers of cyclist fatalities while also accounting for potential policy effects on the size of the cycling population. Over a period of 16 years, 5,254 cyclists died in these counties, representing 34 fatalities per 100,000 cyclist-years. We estimated that complete streets policies made cycling safer, averting 0.6 fatalities per 100,000 cyclist-years (95% confidence interval: -1.0, -0.3) by encouraging a 2.4% increase in cycling but producing only a 0.7% increase in cyclist fatalities. G-computation is a useful tool for understanding the impact of policy on risk and exposure.


Assuntos
Acidentes de Trânsito/mortalidade , Ciclismo/estatística & dados numéricos , Meios de Transporte/legislação & jurisprudência , Algoritmos , Humanos
2.
Genetics ; 206(2): 1153-1167, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28450459

RESUMO

Yeast flocculation is a community-building cell aggregation trait that is an important mechanism of stress resistance and a useful phenotype for brewers; however, it is also a nuisance in many industrial processes, in clinical settings, and in the laboratory. Chemostat-based evolution experiments are impaired by inadvertent selection for aggregation, which we observe in 35% of populations. These populations provide a testing ground for understanding the breadth of genetic mechanisms Saccharomyces cerevisiae uses to flocculate, and which of those mechanisms provide the biggest adaptive advantages. In this study, we employed experimental evolution as a tool to ask whether one or many routes to flocculation are favored, and to engineer a strain with reduced flocculation potential. Using a combination of whole genome sequencing and bulk segregant analysis, we identified causal mutations in 23 independent clones that had evolved cell aggregation during hundreds of generations of chemostat growth. In 12 of those clones, we identified a transposable element insertion in the promoter region of known flocculation gene FLO1, and, in an additional five clones, we recovered loss-of-function mutations in transcriptional repressor TUP1, which regulates FLO1 and other related genes. Other causal mutations were found in genes that have not been previously connected to flocculation. Evolving a flo1 deletion strain revealed that this single deletion reduces flocculation occurrences to 3%, and demonstrated the efficacy of using experimental evolution as a tool to identify and eliminate the primary adaptive routes for undesirable traits.


Assuntos
Evolução Molecular Direcionada , Genética Populacional , Lectinas de Ligação a Manose/genética , Proteínas Nucleares/genética , Proteínas Repressoras/genética , Proteínas de Saccharomyces cerevisiae/genética , Agregação Celular/genética , Elementos de DNA Transponíveis/genética , Floculação , Fenótipo , Regiões Promotoras Genéticas , Saccharomyces cerevisiae/genética , Deleção de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA