Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Am J Bot ; 103(6): 1103-16, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27313197

RESUMO

PREMISE OF THE STUDY: Barleria is a large, pantropical genus of ca. 265 species mainly distributed in the Old World with only one species, B. oenotheroides, extending to the neotropics. This amphi-Atlantic disjunction, frequently displayed by pantropical taxa, has been traditionally explained with vicariance or geodispersal hypotheses and increasingly with long-distance dispersal. The native status of this species in the New World is controversial. METHODS: A molecular phylogeographic study based on the nuclear ribosomal ITS region and plastid trnL-F, rps16, and trnS-G sequences was done to clarify the origin of this tropical intercontinental disjunction. Divergence times were estimated with various analytical approaches, including different markers and primary calibration points. KEY RESULTS: Divergence ages estimated for Barleria lineages disagree with vicariance or geodispersal hypotheses. Genetic differentiation of American vs. African populations of B. oenotheroides does not support a recent anthropogenic introduction to the New World. Our data suggest ancient long-distance dispersal from the Old to the New World probably during the Pliocene or Upper Miocene. The number of dispersal events remains unclear. CONCLUSIONS: Our study demonstrates the native status of Barleria in the New World, resolving one of only three presumed natural Old World-New World disjunctions at the species level among Acanthaceae. This case constitutes a further documented example of the "out-of-Africa" pattern in the family, despite their lack of documented assisted-dispersal syndromes, and highlights the importance of long-distance dispersal to explain pantropical distributions in many families.


Assuntos
Acanthaceae/genética , Acanthaceae/fisiologia , Dispersão de Sementes/fisiologia , Sequência de Bases , Teorema de Bayes , Calibragem , Geografia , Haplótipos/genética , Inflorescência/anatomia & histologia , Nucleotídeos/genética , Filogenia , Especificidade da Espécie , Fatores de Tempo
2.
Am J Bot ; 102(6): 992-1007, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26101423

RESUMO

PREMISE OF THE STUDY: The Tetramerium lineage (Acanthaceae) presents a striking ecological structuring in South America, with groups concentrated in moist forests or in seasonally dry forests. In this study, we investigate the circumscription and relationships of the South American genera as a basis for better understanding historic interactions between dry and moist biomes in the Neotropics. METHODS: We dated the ancestral distribution of the Tetramerium lineage based on one nuclear and four plastid DNA regions. Maximum parsimony, maximum likelihood, and Bayesian inference analyses were performed for this study using 104 terminals. Phylogenetic divergences were dated using a relaxed molecular clock approach and ancestral distributions obtained from dispersal-vicariance analyses. KEY RESULTS: The genera Pachystachys, Schaueria, and Thyrsacanthus are nonmonophyletic. A dry forest lineage dispersed from North America to South America and reached the southwestern part of the continent between the end of the Miocene and beginning of the Pleistocene. This period coincides with the segregation between Amazonian and Atlantic moist forests that established the geographic structure currently found in the group. CONCLUSIONS: The South American genera Pachystachys, Schaueria, and Thyrsacanthus need to be recircumscribed. The congruence among biogeographical events found for the Tetramerium lineage suggests that the dry forest centers currently dispersed throughout South America are relatively old remnants, probably isolated since the Neogene, much earlier than the Last Glacial Maximum postulated by the Pleistocene Arc hypothesis. In addition to exploring the Pleistocene Arc hypothesis, this research also informs evolution in a lineage with numerous geographically restricted and threatened species.


Assuntos
Acanthaceae/classificação , Dessecação , Florestas , Modelos Biológicos , Filogenia , Estações do Ano , Teorema de Bayes , Intervalos de Confiança , América do Sul , Fatores de Tempo
3.
Am J Bot ; 95(9): 1136-52, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21632432

RESUMO

Acanthaceae (Asteridae; Lamiales) include ∼4000 species and encompass a range of morphological diversity, habitats, and biogeographic patterns. Although they are important components of tropical and subtropical habitats worldwide, inadequate knowledge of the family's phylogenetic framework has impeded comparative research. In this study, we sampled all known lineages of Acanthaceae including Andrographideae. Also included were eight of 13 genera whose relationships remain enigmatic. We used sequence data from nrITS and four chloroplast noncoding regions, and parsimony and Bayesian methods of analysis. Results strongly support most aspects of relationships including inclusion of Avicennia in Acanthaceae. Excepting Neuracanthus, newly sampled taxa are placed with strong support; Kudoacanthus is in Justicieae, Tetramerium lineage, and the remaining enigmatic genera are in Whitfieldieae or Barlerieae, and Andrographideae are sister to Barlerieae. This last result is unanticipated, but placement of Andrographideae based on structural characters has been elusive. Neuracanthus is monophyletic but placement relative to (Whitfieldieae (Andrographideae + Barlerieae)) is weakly supported. Many clades have clear morphological synapomorphies, but nonmolecular evidence for some remains elusive. Results suggest an Old World origin with multiple dispersal events to the New World. This study informs future work by clarifying sampling strategy and identifying aspects of relationships that require further study.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA