Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Nature ; 579(7797): 111-117, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32103177

RESUMO

The avascular nature of cartilage makes it a unique tissue1-4, but whether and how the absence of nutrient supply regulates chondrogenesis remain unknown. Here we show that obstruction of vascular invasion during bone healing favours chondrogenic over osteogenic differentiation of skeletal progenitor cells. Unexpectedly, this process is driven by a decreased availability of extracellular lipids. When lipids are scarce, skeletal progenitors activate forkhead box O (FOXO) transcription factors, which bind to the Sox9 promoter and increase its expression. Besides initiating chondrogenesis, SOX9 acts as a regulator of cellular metabolism by suppressing oxidation of fatty acids, and thus adapts the cells to an avascular life. Our results define lipid scarcity as an important determinant of chondrogenic commitment, reveal a role for FOXO transcription factors during lipid starvation, and identify SOX9 as a critical metabolic mediator. These data highlight the importance of the nutritional microenvironment in the specification of skeletal cell fate.


Assuntos
Osso e Ossos/citologia , Microambiente Celular , Condrogênese , Metabolismo dos Lipídeos , Fatores de Transcrição SOX9/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Animais , Osso e Ossos/irrigação sanguínea , Condrócitos/citologia , Condrócitos/metabolismo , Ácidos Graxos/metabolismo , Feminino , Privação de Alimentos , Fatores de Transcrição Forkhead/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Osteogênese , Oxirredução , Fatores de Transcrição SOX9/genética , Transdução de Sinais , Cicatrização
2.
Breast Cancer Res ; 22(1): 132, 2020 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-33256808

RESUMO

BACKGROUND: Targeted therapies for triple-negative breast cancer (TNBC) are limited; however, the epidermal growth factor receptor (EGFR) represents a potential target, as the majority of TNBC express EGFR. The purpose of these studies was to evaluate the effectiveness of two EGFR-targeted antibody-drug conjugates (ADC: ABT-414; ABBV-321) in combination with navitoclax, an antagonist of the anti-apoptotic BCL-2 and BCL-XL proteins, in order to assess the translational relevance of these combinations for TNBC. METHODS: The pre-clinical efficacy of combined treatments was evaluated in multiple patient-derived xenograft (PDX) models of TNBC. Microscopy-based dynamic BH3 profiling (DBP) was used to assess mitochondrial apoptotic signaling induced by navitoclax and/or ADC treatments, and the expression of EGFR and BCL-2/XL was analyzed in 46 triple-negative patient tumors. RESULTS: Treatment with navitoclax plus ABT-414 caused a significant reduction in tumor growth in five of seven PDXs and significant tumor regression in the highest EGFR-expressing PDX. Navitoclax plus ABBV-321, an EGFR-targeted ADC that displays more effective wild-type EGFR-targeting, elicited more significant tumor growth inhibition and regressions in the two highest EGFR-expressing models evaluated. The level of mitochondrial apoptotic signaling induced by single or combined drug treatments, as measured by DBP, correlated with the treatment responses observed in vivo. Lastly, the majority of triple-negative patient tumors were found to express EGFR and co-express BCL-XL and/or BCL-2. CONCLUSIONS: The dramatic tumor regressions achieved using combined agents in pre-clinical TNBC models underscore the abilities of BCL-2/XL antagonists to enhance the effectiveness of EGFR-targeted ADCs and highlight the clinical potential for usage of such targeted ADCs to alleviate toxicities associated with combinations of BCL-2/XL inhibitors and systemic chemotherapies.


Assuntos
Compostos de Anilina/farmacologia , Anticorpos Monoclonais Humanizados/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Imunoconjugados/farmacologia , Sulfonamidas/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Compostos de Anilina/uso terapêutico , Animais , Anticorpos Monoclonais Humanizados/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Apoptose/efeitos dos fármacos , Mama/patologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Receptores ErbB/análise , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Feminino , Humanos , Imunoconjugados/uso terapêutico , Camundongos , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Sulfonamidas/uso terapêutico , Neoplasias de Mama Triplo Negativas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto , Proteína bcl-X/antagonistas & inibidores , Proteína bcl-X/metabolismo
3.
Cell Rep ; 42(12): 113564, 2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-38100350

RESUMO

Triple-negative breast cancer (TNBC) is a heterogeneous disease with limited treatment options. To characterize TNBC heterogeneity, we defined transcriptional, epigenetic, and metabolic subtypes and subtype-driving super-enhancers and transcription factors by combining functional and molecular profiling with computational analyses. Single-cell RNA sequencing revealed relative homogeneity of the major transcriptional subtypes (luminal, basal, and mesenchymal) within samples. We found that mesenchymal TNBCs share features with mesenchymal neuroblastoma and rhabdoid tumors and that the PRRX1 transcription factor is a key driver of these tumors. PRRX1 is sufficient for inducing mesenchymal features in basal but not in luminal TNBC cells via reprogramming super-enhancer landscapes, but it is not required for mesenchymal state maintenance or for cellular viability. Our comprehensive, large-scale, multiplatform, multiomics study of both experimental and clinical TNBC is an important resource for the scientific and clinical research communities and opens venues for future investigation.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/patologia , Fatores de Transcrição/metabolismo , Regulação Neoplásica da Expressão Gênica , Proteínas de Homeodomínio/metabolismo
4.
Biol Reprod ; 85(5): 934-45, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21734264

RESUMO

Our previous analysis of Sertoli cell androgen receptor (AR) knockout (SCARKO) mice revealed that several cytoskeletal components are a potential target of androgen action. Here, we found that one of these components, the beta-tubulin isotype Tubb3, is differentially regulated in testes from SCARKO mice (relative to littermate controls) from Postnatal Day 10 to adulthood. The Tubb3 gene is unique in this respect, as at Day 10, no other beta-tubulin genes are significantly regulated by AR. We further characterized androgen regulation of Tubb3 in vivo and in vitro and demonstrated that it is a conserved feature in both mice and rats. To investigate whether androgens directly regulate Tubb3 expression, we screened for androgen response elements (AREs) in the Tubb3 gene. In silico analysis revealed the presence of four ARE motifs in Tubb3 intron 1, two of which bind to AR in vitro. Mutation of one of these (ARE1) strongly reduced androgen-dependent reporter gene expression. These results, coupled with the finding that the AR binds to the Tubb3 ARE region in vivo, suggest that Tubb3 is a direct target of AR. Our data strengthen the contention that androgens exert their effects on spermatogenesis, in part, through modulation of the Sertoli cell cytoskeleton. Androgen regulation of beta-tubulin has also been described in neurons, fortifying the already known similarity in microtubule organization in Sertoli cell processes and neurons, the only other cell type in which Tubb3 is known to be expressed.


Assuntos
Androgênios/metabolismo , Células de Sertoli/metabolismo , Tubulina (Proteína)/metabolismo , Animais , Sequência de Bases , Células Cultivadas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Dados de Sequência Molecular , Isoformas de Proteínas/metabolismo , Ratos , Ratos Wistar , Receptores Androgênicos/deficiência , Receptores Androgênicos/genética , Células de Sertoli/citologia , Espermatogênese/fisiologia , Tubulina (Proteína)/genética
5.
Sci Signal ; 14(686)2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34103421

RESUMO

Cancer cells have differential metabolic dependencies compared to their nonmalignant counterparts. However, few metabolism-targeting compounds have been successful in clinical trials. Here, we investigated the metabolic vulnerabilities of triple-negative breast cancer (TNBC), particularly those metabolic perturbations that increased mitochondrial apoptotic priming and sensitivity to BH3 mimetics (drugs that antagonize antiapoptotic proteins). We used high-throughput dynamic BH3 profiling (HT-DBP) to screen a library of metabolism-perturbing small molecules, which revealed inhibitors of the enzyme nicotinamide phosphoribosyltransferase (NAMPT) as top candidates. In some TNBC cells but not in nonmalignant cells, NAMPT inhibitors increased overall apoptotic priming and induced dependencies on specific antiapoptotic BCL-2 family members. Treatment of TNBC cells with NAMPT inhibitors sensitized them to subsequent treatment with BH3 mimetics. The combination of a NAMPT inhibitor (FK866) and an MCL-1 antagonist (S63845) reduced tumor growth in a TNBC patient-derived xenograft model in vivo. We found that NAMPT inhibition reduced NAD+ concentrations below a critical threshold that resulted in depletion of adenine, which was the metabolic trigger that primed TNBC cells for apoptosis. These findings demonstrate a close interaction between metabolic and mitochondrial apoptotic signaling pathways and reveal that exploitation of a tumor-specific metabolic vulnerability can sensitize some TNBC to BH3 mimetics.


Assuntos
Neoplasias de Mama Triplo Negativas , Apoptose , Proteínas Reguladoras de Apoptose , Linhagem Celular Tumoral , Humanos , Mitocôndrias , Proteína de Sequência 1 de Leucemia de Células Mieloides , Proteínas Proto-Oncogênicas c-bcl-2 , Neoplasias de Mama Triplo Negativas/tratamento farmacológico
6.
Nat Cancer ; 2(1): 34-48, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33997789

RESUMO

Pharmacologic inhibitors of cyclin-dependent kinases 4 and 6 (CDK4/6) were designed to induce cancer cell cycle arrest. Recent studies have suggested that these agents also exert other effects, influencing cancer cell immunogenicity, apoptotic responses, and differentiation. Using cell-based and mouse models of breast cancer together with clinical specimens, we show that CDK4/6 inhibitors induce remodeling of cancer cell chromatin characterized by widespread enhancer activation, and that this explains many of these effects. The newly activated enhancers include classical super-enhancers that drive luminal differentiation and apoptotic evasion, as well as a set of enhancers overlying endogenous retroviral elements that is enriched for proximity to interferon-driven genes. Mechanistically, CDK4/6 inhibition increases the level of several Activator Protein-1 (AP-1) transcription factor proteins, which are in turn implicated in the activity of many of the new enhancers. Our findings offer insights into CDK4/6 pathway biology and should inform the future development of CDK4/6 inhibitors.


Assuntos
Neoplasias da Mama , Fator de Transcrição AP-1 , Animais , Neoplasias da Mama/tratamento farmacológico , Pontos de Checagem do Ciclo Celular , Quinase 4 Dependente de Ciclina/genética , Feminino , Genes cdc , Humanos , Camundongos , Fator de Transcrição AP-1/genética
7.
Nat Med ; 23(11): 1342-1351, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29035366

RESUMO

Cross-talk among oncogenic signaling and metabolic pathways may create opportunities for new therapeutic strategies in cancer. Here we show that although acute inhibition of EGFR-driven glucose metabolism induces only minimal cell death, it lowers the apoptotic threshold in a subset of patient-derived glioblastoma (GBM) cells. Mechanistic studies revealed that after attenuated glucose consumption, Bcl-xL blocks cytoplasmic p53 from triggering intrinsic apoptosis. Consequently, targeting of EGFR-driven glucose metabolism in combination with pharmacological stabilization of p53 with the brain-penetrant small molecule idasanutlin resulted in synthetic lethality in orthotopic glioblastoma xenograft models. Notably, neither the degree of EGFR-signaling inhibition nor genetic analysis of EGFR was sufficient to predict sensitivity to this therapeutic combination. However, detection of rapid inhibitory effects on [18F]fluorodeoxyglucose uptake, assessed through noninvasive positron emission tomography, was an effective predictive biomarker of response in vivo. Together, these studies identify a crucial link among oncogene signaling, glucose metabolism, and cytoplasmic p53, which may potentially be exploited for combination therapy in GBM and possibly other malignancies.


Assuntos
Apoptose , Neoplasias Encefálicas/metabolismo , Citoplasma/metabolismo , Glioblastoma/metabolismo , Glucose/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Neoplasias Encefálicas/patologia , Receptores ErbB/metabolismo , Feminino , Glioblastoma/patologia , Humanos , Camundongos , Camundongos Endogâmicos NOD , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Oncotarget ; 7(9): 9975-92, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26862738

RESUMO

The development of cancer is often accompanied by a loss of the primary cilium, a microtubule-based cellular protrusion that functions as a cellular antenna and that puts a break on cell proliferation. Hence, restoration of the primary cilium in cancer cells may represent a novel promising approach to attenuate tumor growth. Using a high content analysis-based approach we screened a library of clinically evaluated compounds and marketed drugs for their ability to restore primary cilium expression in pancreatic ductal cancer cells. A diverse set of 118 compounds stimulating cilium expression was identified. These included glucocorticoids, fibrates and other nuclear receptor modulators, neurotransmitter regulators, ion channel modulators, tyrosine kinase inhibitors, DNA gyrase/topoisomerase inhibitors, antibacterial compounds, protein inhibitors, microtubule modulators, and COX inhibitors. Certain compounds also dramatically affected the length of the cilium. For a selection of compounds (Clofibrate, Gefitinib, Sirolimus, Imexon and Dexamethasone) their ability to restore ciliogenesis was confirmed in a panel of human cancer cell line models representing different cancer types (pancreas, lung, kidney, breast). Most compounds attenuated cell proliferation, at least in part through induction of the primary cilium, as demonstrated by cilium removal using chloral hydrate. These findings reveal that several commonly used drugs restore ciliogenesis in cancer cells, and warrant further investigation of their antineoplastic properties.


Assuntos
Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Cílios/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Células A549 , Antineoplásicos/classificação , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Cílios/metabolismo , Gefitinibe , Humanos , Microscopia Confocal , Neoplasias/metabolismo , Neoplasias/patologia , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Quinazolinas/farmacologia , Reprodutibilidade dos Testes
9.
PLoS One ; 9(9): e106913, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25215509

RESUMO

Increased lipogenesis is a hallmark of a wide variety of cancers and is under intense investigation as potential antineoplastic target. Although brisk lipogenesis is observed in the presence of exogenous lipids, evidence is mounting that these lipids may adversely affect the efficacy of inhibitors of lipogenic pathways. Therefore, to fully exploit the therapeutic potential of lipid synthesis inhibitors, a better understanding of the interrelationship between de novo lipid synthesis and exogenous lipids and their respective role in cancer cell proliferation and therapeutic response to lipogenesis inhibitors is of critical importance. Here, we show that the proliferation of various cancer cell lines (PC3M, HepG2, HOP62 and T24) is attenuated when cultured in lipid-reduced conditions in a cell line-dependent manner, with PC3M being the least affected. Interestingly, all cell lines--lipogenic (PC3M, HepG2, HOP62) as well as non-lipogenic (T24)--raised their lipogenic activity in these conditions, albeit to a different degree. Cells that attained the highest lipogenic activity under these conditions were best able to cope with lipid reduction in term of proliferative capacity. Supplementation of the medium with very low density lipoproteins, free fatty acids and cholesterol reversed this activation, indicating that the mere lack of lipids is sufficient to activate de novo lipogenesis in cancer cells. Consequently, cancer cells grown in lipid-reduced conditions became more dependent on de novo lipid synthesis pathways and were more sensitive to inhibitors of lipogenic pathways, like Soraphen A and Simvastatin. Collectively, these data indicate that limitation of access to exogenous lipids, as may occur in intact tumors, activates de novo lipogenesis is cancer cells, helps them to thrive under these conditions and makes them more vulnerable to lipogenesis inhibitors. These observations have important implications for the design of new antineoplastic strategies targeting the cancer cell's lipid metabolism.


Assuntos
Vias Biossintéticas , Metabolismo dos Lipídeos , Lipídeos/biossíntese , Neoplasias/metabolismo , Neoplasias/patologia , Vias Biossintéticas/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Colesterol/metabolismo , Ácidos Graxos/metabolismo , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipídeos/farmacologia , Lipoproteínas VLDL/metabolismo , Regulação para Cima/efeitos dos fármacos
10.
Cancer Res ; 70(20): 8117-26, 2010 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-20876798

RESUMO

Activation of de novo lipogenesis in cancer cells is increasingly recognized as a hallmark of aggressive cancers and has been implicated in the production of membranes for rapid cell proliferation. In the current report, we provide evidence that this activation has a more profound role. Using a mass spectrometry-based phospholipid analysis approach, we show that clinical tumor tissues that display the lipogenic phenotype show an increase in the degree of lipid saturation compared with nonlipogenic tumors. Reversal of the lipogenic switch in cancer cells by treatment with the lipogenesis inhibitor soraphen A or by targeting lipogenic enzymes with small interfering RNA leads to a marked decrease in saturated and mono-unsaturated phospholipid species and increases the relative degree of polyunsaturation. Because polyunsaturated acyl chains are more susceptible to peroxidation, inhibition of lipogenesis increases the levels of peroxidation end products and renders cells more susceptible to oxidative stress-induced cell death. As saturated lipids pack more densely, modulation of lipogenesis also alters lateral and transversal membrane dynamics as revealed by diffusion of membrane-targeted green fluorescent protein and by the uptake and response to doxorubicin. These data show that shifting lipid acquisition from lipid uptake toward de novo lipogenesis dramatically changes membrane properties and protects cells from both endogenous and exogenous insults. These findings provide important new insights into the role of de novo lipogenesis in cancer cells, and they provide a rationale for the use of lipogenesis inhibitors as antineoplastic agents and as chemotherapeutic sensitizers.


Assuntos
Radicais Livres/farmacologia , Lipogênese/fisiologia , Lipídeos de Membrana/metabolismo , Neoplasias/metabolismo , Antibióticos Antineoplásicos/metabolismo , Divisão Celular , Membrana Celular/efeitos dos fármacos , Membrana Celular/fisiologia , Colesterol/metabolismo , Doxorrubicina/metabolismo , Células HCT116/efeitos dos fármacos , Células HCT116/metabolismo , Humanos , Immunoblotting , Peroxidação de Lipídeos , Masculino , Neoplasias/patologia , Fosfolipídeos/metabolismo , Próstata/metabolismo , Próstata/patologia , Prostatectomia , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , RNA Interferente Pequeno/genética , Espectrometria de Massas por Ionização por Electrospray , Transfecção , Triglicerídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA