Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
BMC Genet ; 21(1): 78, 2020 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-32682388

RESUMO

BACKGROUND: Information on population structure and genetic diversity of germplasm in a breeding programme is useful because it enhances judicious utilisation of genetic resources to achieve breeding objectives. Seventy early maturing provitamin A (PVA) quality protein maize (QPM) inbreds developed by the IITA- maize improvement programme were genotyped using 8171 DArTseq markers. Furthermore, 96 hybrids derived from 24 selected inbreds plus four checks were evaluated under low-N and optimal environments in Nigeria during 2016 and 2017. Genotypic and phenotypic data of inbreds and hybrids respectively, were analysed to (i) assess the level of genetic dissimilarities and population structure of the inbreds, and (ii) investigate the grain yield performance of derived hybrids under low-N, optimal and across environments. RESULTS: Genetic diversity among the seventy inbreds was high varying from 0.042 to 0.500 with an average of 0.357. Sixty-six inbred lines with probabilities ≥0.70 were assigned to a single group. The population structure analysis, the UPGMA phylogeny, and the principal Coordinate Analysis (PCoA) of the DArTseq markers revealed a clear separation of five groups and each followed pedigree records. Clustered inbreds displayed common characteristics including high PVA levels, and drought and low-N tolerance. The top performing hybrid, TZEIORQ 40 × TZEIORQ 26 out-yielded the best hybrid control, TZEIOR 127 × TZEIOR 57 by 8, 3, and 9% under low-N, optimal, and across environments, respectively. High repeatability estimates were detected for grain yield under each and across environments. Similarly, high breeding efficiency of 71, 70 and 72% were computed under low-N, optimal, and across environments, respectively. CONCLUSIONS: The UPGMA clustering, the structure analysis, and the PCoA consistently revealed five groups which largely followed pedigree information indicating the existence of genetically distinct groups in the inbred lines. High repeatability and breeding efficiency values estimated for grain yield of hybrids under low-N, optimal and across environments demonstrated that high productive hybrids could be developed using inbreds from the opposing clusters identified by the DArTseq markers. The 15 top performing hybrids identified, particularly TZEIORQ 40 × TZEIORQ 26 and TZEIORQ 29 × TZEIORQ 43 should be further evaluated for release and commercialization in SSA.


Assuntos
Hibridização Genética , Polimorfismo Genético , Provitaminas/análise , Vitamina A/análise , Zea mays/genética , Grão Comestível/crescimento & desenvolvimento , Genótipo , Nigéria , Nitrogênio , Melhoramento Vegetal , Zea mays/química
2.
Agron J ; 112(5): 3549-3566, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33303994

RESUMO

Drought-tolerant early-maturing maize (Zea mays L.) inbred lines with high levels of provitamin A (PVA) and quality protein (QPM) are urgently needed for development of superior hybrids to mitigate malnutrition and to intensify maize production and productivity in sub-Saharan Africa (SSA). This study was designed to identify early-maturing inbred lines with combined tolerance to drought, elevated tryptophan, and PVA contents; to examine inbred-hybrid relationships for tryptophan and PVA accumulation; and to select hybrids with outstanding grain yield (GY) performance. A total of 64 inbred lines and six checks, plus 96 hybrids and four checks, were evaluated under drought and well-watered environments in Nigeria for 2 yr. Eighteen parental lines and 54 derived hybrids were assayed for tryptophan and PVA contents. Ten drought-tolerant inbred lines with high tryptophan and elevated PVA levels were identified in the top 10 hybrid combinations across managed drought and well-watered conditions. The inbred-hybrid relationship was significant for GY under each and across the two contrasting environments. Significant average heterosis was found for tryptophan and PVA under well-watered conditions. This indicated that the selected inbred lines could be used for developing high-yielding PVA-QPM hybrids tolerant to drought stress in SSA. The 10 top-performing PVA-QPM hybrids identified are being extensively evaluated in different locations and subsequently in on-farm trials for commercialization throughout SSA.

3.
Plant J ; 82(2): 232-44, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25720833

RESUMO

Abscisic acid (ABA) is a major phytohormone involved in important stress-related and developmental plant processes. Recent phosphoproteomic analyses revealed a large set of ABA-triggered phosphoproteins as putative mitogen-activated protein kinase (MAPK) targets, although the evidence for MAPKs involved in ABA signalling is still scarce. Here, we identified and reconstituted in vivo a complete ABA-activated MAPK cascade, composed of the MAP3Ks MAP3K17/18, the MAP2K MKK3 and the four C group MAPKs MPK1/2/7/14. In planta, we show that ABA activation of MPK7 is blocked in mkk3-1 and map3k17mapk3k18 plants. Coherently, both mutants exhibit hypersensitivity to ABA and altered expression of a set of ABA-dependent genes. A genetic analysis further reveals that this MAPK cascade is activated by the PYR/PYL/RCAR-SnRK2-PP2C ABA core signalling module through protein synthesis of the MAP3Ks, unveiling an atypical mechanism for MAPK activation in eukaryotes. Our work provides evidence for a role of an ABA-induced MAPK pathway in plant stress signalling.


Assuntos
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Sistema de Sinalização das MAP Quinases/fisiologia
4.
Heliyon ; 8(12): e12217, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36578397

RESUMO

Macrophomina root rot disease (MRRD) caused by Macrophomina phaseolina is an emerging threat to the profitable cowpea production in northern Ghana. Recommended control methods including the use of fungicides are ineffective and expensive for resource poor farmers whilst biocontrol options are not commercially available. An integrated method based on host plant resistance is considered the cheapest and most effective method of managing the disease. This study sought to confirm and characterize previously identified MRRD isolates from Northern Ghana using molecular technology, and to identify cowpea with potential sources of resistance to the MRRD. A PCR assay of ten isolates of the cowpea root rot pathogen revealed all isolates belonged to the species M. phaseolina, whilst a nucleotide BLAST of eight isolates showed 98% similarity with the sequences of Macrophomina isolates from other host available in GenBank. A sick pot method evaluation of 49 cowpea lines found 10 lines resistant to MRRD on a 1-9 disease severity scale (disease score, less than 5). A selection of eight resistant lines (Suvita 2, Abagbaala, IT97K573-1-1, IT93K-503-1-1, Hewale, AV2 3224, Nhyira and T2T4), and a susceptible check (Songotra) were evaluated against 10 isolates of M. phaseolina using a sick pot method. All the genotypes except for the susceptible check were resistant to MRRD. Thus, these genotypes could be used in cowpea MRRD resistance breeding programs.

5.
Front Plant Sci ; 13: 957061, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35991399

RESUMO

Early Leaf Spot (ELS) caused by the fungus Passalora arachidicola and Late Leaf Spot (LLS) also caused by the fungus Nothopassalora personata, are the two major groundnut (Arachis hypogaea L.) destructive diseases in Ghana. Accurate phenotyping and genotyping to develop groundnut genotypes resistant to Leaf Spot Diseases (LSD) and to increase groundnut production is critically important in Western Africa. Two experiments were conducted at the Council for Scientific and Industrial Research-Savanna Agricultural Research Institute located in Nyankpala, Ghana to explore the effectiveness of using RGB-image method as a high-throughput phenotyping tool to assess groundnut LSD and to estimate yield components. Replicated plots arranged in a rectangular alpha lattice design were conducted during the 2020 growing season using a set of 60 genotypes as the training population and 192 genotypes for validation. Indirect selection models were developed using Red-Green-Blue (RGB) color space indices. Data was collected on conventional LSD ratings, RGB imaging, pod weight per plant and number of pods per plant. Data was analyzed using a mixed linear model with R statistical software version 4.0.2. The results showed differences among the genotypes for the traits evaluated. The RGB-image method traits exhibited comparable or better broad sense heritability to the conventionally measured traits. Significant correlation existed between the RGB-image method traits and the conventionally measured traits. Genotypes 73-33, Gha-GAF 1723, Zam-ICGV-SM 07599, and Oug-ICGV 90099 were among the most resistant genotypes to ELS and LLS, and they represent suitable sources of resistance to LSD for the groundnut breeding programs in Western Africa.

6.
Genes (Basel) ; 12(4)2021 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-33805499

RESUMO

Assessment of genetic variability in heat-tolerant tomato germplasm is a pre-requisite to improve yield and fruit quality under heat stress. We assessed the population structure and diversity in a panel of three Solanum pimpinellifolium (wild tomatoes) and 42 S. lycopersicum (cultivated tomatoes) lines and accessions with varying heat tolerance levels. The DArTseq marker was used for the sequencing and 5270 informative single nucleotide polymorphism (SNP) markers were retained for the genomic analysis. The germplasm was evaluated under two heat stress environments for five yield and flower related traits. The phenotypic evaluation revealed moderate broad-sense heritabilities for fruit weight per plant and high broad-sense heritabilities for fruit weight, number of inflorescences per plant, and number of flowers per inflorescence. The hierarchical clustering based on identity by state dissimilarity matrix and UPGMA grouped the germplasm into three clusters. The cluster analysis based on heat-tolerance traits separated the germplasm collection into five clusters. The correlation between the phenotypic and genomic-based distance matrices was low (r = 0.2, p < 0.05). The joint phenotypic and genomic-based clustering grouped the germplasm collection into five clusters well defined for their response to heat stress ranging from highly sensitive to highly tolerant groups. The heat-sensitive and heat-tolerant clusters of S. lycopersicum lines were differentiated by a specific pattern of minor allele frequency distribution on chromosome 11. The joint phenotypic and genomic analysis revealed important diversity within the germplasm collection. This study provides the basis for efficient selection of parental lines to breed heat-tolerant varieties.


Assuntos
Genômica/métodos , Fenótipo , Melhoramento Vegetal/métodos , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Solanum lycopersicum/crescimento & desenvolvimento , Termotolerância , Genoma de Planta , Genótipo , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo
7.
Front Plant Sci ; 12: 720670, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34567033

RESUMO

A defining component of agroforestry parklands across Sahelo-Sudanian Africa (SSA), the shea tree (Vitellaria paradoxa) is central to sustaining local livelihoods and the farming environments of rural communities. Despite its economic and cultural value, however, not to mention the ecological roles it plays as a dominant parkland species, shea remains semi-domesticated with virtually no history of systematic genetic improvement. In truth, shea's extended juvenile period makes traditional breeding approaches untenable; but the opportunity for genome-assisted breeding is immense, provided the foundational resources are available. Here we report the development and public release of such resources. Using the FALCON-Phase workflow, 162.6 Gb of long-read PacBio sequence data were assembled into a 658.7 Mbp, chromosome-scale reference genome annotated with 38,505 coding genes. Whole genome duplication (WGD) analysis based on this gene space revealed clear signatures of two ancient WGD events in shea's evolutionary past, one prior to the Astrid-Rosid divergence (116-126 Mya) and the other at the root of the order Ericales (65-90 Mya). In a first genome-wide look at the suite of fatty acid (FA) biosynthesis genes that likely govern stearin content, the primary determinant of shea butter quality, relatively high copy numbers of six key enzymes were found (KASI, KASIII, FATB, FAD2, FAD3, and FAX2), some likely originating in shea's more recent WGD event. To help translate these findings into practical tools for characterization, selection, and genome-wide association studies (GWAS), resequencing data from a shea diversity panel was used to develop a database of more than 3.5 million functionally annotated, physically anchored SNPs. Two smaller, more curated sets of suggested SNPs, one for GWAS (104,211 SNPs) and the other targeting FA biosynthesis genes (90 SNPs), are also presented. With these resources, the hope is to support national programs across the shea belt in the strategic, genome-enabled conservation and long-term improvement of the shea tree for SSA.

8.
Front Plant Sci ; 11: 572200, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33013995

RESUMO

Cassava is the main source of carbohydrate for over 70% of the people in Nigeria, the world's largest producer and consumer of the crop. The yields of cassava are, however, relatively low in Nigeria largely due to pests and disease infections that significantly lead to inconsistencies in productivity of cassava genotypes in various environments. Fifty-eight F1 hybrid cassava genotypes plus their two parents which served as check varieties were evaluated in three locations for two years (that is six environments). The objectives of the study were to evaluate genotype by environment interactions (GEI) on resistance to cassava green mite [CGM, Mononychellus tanajoa (Bondar)] associated traits and effects on yield performance of cassava genotypes in Nigeria and to identify superior genotypes that exhibit high stability which combine CGM resistance and high fresh root yield with general and specific environmental adaptation using additive main effects and multiplicative interaction (AMMI) and genotype stability index (GSI). The combined analysis of variance based on AMMI revealed significant genotype, environment, and genotype by environment interactions (GEI) for all traits. The percentage variation due to environment was higher than the percentage variation due to genotype for cassava green mite severity (CGMS), leaf retention (LR), root dry matter content (RDMC), and fresh root yield (FRY) indicating that environment greatly influenced the expression of these traits. The percentage variation due to GEI accounted for higher percentage variation than that of genotype and environment separately for all traits, indicating the influence of genotype by environment interaction on expression of the traits. These findings reveal that screening/evaluating for these traits needs multi-environment trials. According to GSI ranking, genotypes G31 (IBA131794), G19 (IBA131762), the check variety G52 (TMEB778), and G11 (IBA131748) were identified as the most stable and most resistant to CGM which also combine high FRY and other useful agronomic traits, implying that these traits in cassava can even be incorporated as preferred by farmers. These genotypes can be tested in more environments to determine their adaptability and potential recommendation for release to farmers for growing.

9.
MethodsX ; 7: 100977, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32670805

RESUMO

The macro "PollenCounter" in ImageJ was initially developed to assess pollen viability in grapevine. We set out to see if PollenCounter could be used to assess pollen number and viability in tomatoes.•We tested different optimization scenarios by adjusting the pollen size (100-900, 200-900 pixel2) and circularity of pollen grains (0.4-1, 0.5-1, and 0.6-1) on 31 microscopic images of stained tomato pollen. Both total pollen number and proportion of viable pollen were positively and significantly correlated with the outputs from manual counting. The scenario with 100-900 pixel2 pollen size and 0.4-1 circularity had the highest association for pollen number (r = 0.99) and pollen viability (r = 0.86). PollenCounter is 32-fold faster than manual counting.•We added a command to the macro to automatically save the outputs containing the number of total and viable pollen, avoiding transcription errors inherent to manual counting.•We successfully applied the optimized PollenCounter to discriminate tomato genotypes based on pollen number and pollen viability under heat stress. Our results show that PollenCounter, as an open-access macro, can be customized and improved to meet users' needs. The use of PollenCounter can save time and money in pollen quality assessment. We outline the steps to optimize the macro for other samples or crop species. The optimized macro could allow efficient screening of a large germplasm collection for pollen thermo-tolerance and selection of best thermo-tolerant individuals in breeding programs.

10.
Plant Breed ; 139(3): 575-588, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32742048

RESUMO

The number of drought and low-N tolerant hybrids with elevated levels of provitamin A (PVA) in sub-Saharan Africa could increase when PVA genes are optimized and validated for developed drought and low-N tolerant inbred lines. This study aimed to (a) determine the levels of drought and low-N tolerance, and PVA concentrations in early maturing PVA-quality protein maize (QPM) inbred lines, and (b) identify lines harbouring the crtRB1 and LcyE genes as sources of favourable alleles of PVA. Seventy early maturing PVA-QPM inbreds were evaluated under drought, low-N and optimal environments in Nigeria for two years. The inbreds were assayed for PVA levels and the presence of PVA genes using allele-specific PCR markers. Moderate range of PVA contents was observed for the inbreds. Nonetheless, TZEIORQ 55 combined high PVA concentration with drought and low-N tolerance. The crtRB1-3'TE primer and the KASP SNP (snpZM0015) consistently identified nine inbreds including TZEIORQ 55 harbouring the favourable alleles of the crtRB1 gene. These inbreds could serve as donor parents of the favourable crtRB1-3'TE allele for PVA breeding in maize.

11.
Plants (Basel) ; 9(4)2020 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-32325826

RESUMO

White Guinea yam is mostly a dioecious outcrossing crop with male and female flowers produced on distinct plants. Fertile parents produce high fruit set in an open pollination polycross block, which is a cost-effective and convenient way of generating variability in yam breeding. However, the pollen parent of progeny from polycross mating is usually unknown. This study aimed to determine paternity in white Guinea yam half-sib progenies from polycross mating design. A total of 394 half-sib progenies from random open pollination involving nine female and three male parents was genotyped with 6602 SNP markers from DArTSeq platform to recover full pedigree. A higher proportion of expected heterozygosity, allelic richness, and evenness were observed in the half-sib progenies. A complete pedigree was established for all progenies from two families (TDr1685 and TDr1688) with 100% accuracy, while in the remaining families, paternity was assigned successfully only for 56 to 98% of the progenies. Our results indicated unequal paternal contribution under natural open pollination in yam, suggesting unequal pollen migrations or gene flow among the crossing parents. A total of 3.8% of progenies lacking paternal identity due to foreign pollen contamination outside the polycross block was observed. This study established the efficient determination of parental reconstruction and allelic contributions in the white Guinea yam half-sib progenies generated from open pollination polycross using SNP markers. Findings are useful for parental reconstruction, accurate dissection of the genetic effects, and selection in white Guinea yam breeding program utilizing polycross mating design.

12.
J Ethnobiol Ethnomed ; 13(1): 37, 2017 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-28633633

RESUMO

BACKGROUND: Understanding factors driving farmers' uses of crop genetic resources is a key component not only to design appropriate conservation strategies but also to promote sustainable production. However, in Benin, limited information is available on farmers' knowledge related to pigeonpea uses and conservation. This study aimed at i) identifying and investigating the different uses of pigeonpea in relation with socio-cultural factors, namely age, gender, ethnic group and respondents' residence, ii) assessing pigeonpea varieties richness at household level and iii) evaluating the extent and distribution of pigeonpea varieties. METHODS: Three hundred and two farmers were surveyed using structured questionnaire. Direct observation, field visit and focus group discussion were carried out. Association between number of varieties maintained at household level and socio-cultural variables was tested. Mann-Whitney test was used to assess whether the number of varieties held by households headed by men and women were different. Distribution and extent of diversity was assessed through four cells analysis. RESULTS: Farmers in Benin mainly grow pigeonpea for its grains for home consumption. Pigeonpea's stem and leaves are used for medicinal purposes to treat malaria, dizziness, measles, and eye infection. The ethnic group and the locality of residence of farmers influenced on the use of pigeonpea for medicinal purposes (P < 0.01). There was no significant association (P > 0.05) between the number of varieties held by household and the age of the respondent, number of years of experience in pigeonpea cultivation, the size of household, number of family members engaged in agricultural activities and gender. Farmers used criteria including seed colors, seed size, plant height, maturity groups and cooking time to classify their varieties. Varieties with white seed coat color were the most grown while varieties with black, red or mottled seed coat color are being abandoned and deserve to be conserved. CONCLUSION: Knowledge on medicinal uses of pigeonpea is vertically transmitted within community and pigeonpea varieties maintenance at household level does not depend on socio-cultural factors. This study will contribute to raise awareness on the various utilization of pigeonpea. In addition, it provides the basis for designing conservation strategies of pigeonpea genetic resources.


Assuntos
Cajanus , Conhecimento , Biodiversidade , Cajanus/classificação , Cajanus/genética , Conservação dos Recursos Naturais , Fitoterapia
13.
Plant Signal Behav ; 10(9): e1062197, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26313321

RESUMO

Abscisic acid (ABA) is a major phytohormone mediating important stress-related processes. We recently unveiled an ABA-activated MAPK signaling module constituted of MAP3K17/18-MKK3-MPK1/2/7/14. Unlike classical rapid MAPK activation, we showed that the activation of the new MAPK module is delayed and relies on the MAP3K protein synthesis. In this addendum, we discuss the role of this original and unexpected activation mechanism of MAPK cascades which suggests that MAPKs can regulate both early and long-term plant stress responses.


Assuntos
Arabidopsis/enzimologia , Sistema de Sinalização das MAP Quinases , Ácido Abscísico/farmacologia , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
14.
Biotechnol Adv ; 32(1): 40-52, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24091291

RESUMO

As sessile organisms, plants have developed specific mechanisms that allow them to rapidly perceive and respond to stresses in the environment. Among the evolutionarily conserved pathways, the ABA (abscisic acid) signaling pathway has been identified as a central regulator of abiotic stress response in plants, triggering major changes in gene expression and adaptive physiological responses. ABA induces protein kinases of the SnRK family to mediate a number of its responses. Recently, MAPK (mitogen activated protein kinase) cascades have also been shown to be implicated in ABA signaling. Therefore, besides discussing the role of ABA in abiotic stress signaling, we will also summarize the evidence for a role of MAPKs in the context of abiotic stress and ABA signaling.


Assuntos
Ácido Abscísico , Proteínas Quinases Ativadas por Mitógeno , Plantas , Transdução de Sinais , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA