Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
RNA ; 30(4): 367-380, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38238085

RESUMO

Fungal Trl1 is an essential trifunctional tRNA splicing enzyme that heals and seals tRNA exons with 2',3'-cyclic-PO4 and 5'-OH ends. Trl1 is composed of C-terminal cyclic phosphodiesterase and central polynucleotide kinase end-healing domains that generate the 3'-OH,2'-PO4 and 5'-PO4 termini required for sealing by an N-terminal ATP-dependent ligase domain. Trl1 enzymes are present in many human fungal pathogens and are promising targets for antifungal drug discovery because their domain structures and biochemical mechanisms are unique compared to the mammalian RtcB-type tRNA splicing enzyme. Here we report that Mucorales species (deemed high-priority human pathogens by WHO) elaborate a noncanonical tRNA splicing apparatus in which a monofunctional RNA ligase enzyme is encoded separately from any end-healing enzymes. We show that Mucor circinelloides RNA ligase (MciRNL) is active in tRNA splicing in vivo in budding yeast in lieu of the Trl1 ligase domain. Biochemical and kinetic characterization of recombinant MciRNL underscores its requirement for a 2'-PO4 terminus in the end-joining reaction, whereby the 2'-PO4 enhances the rates of RNA 5'-adenylylation (step 2) and phosphodiester synthesis (step 3) by ∼125-fold and ∼6200-fold, respectively. In the canonical fungal tRNA splicing pathway, the splice junction 2'-PO4 installed by RNA ligase is removed by a dedicated NAD+-dependent RNA 2'-phosphotransferase Tpt1. Here we identify and affirm by genetic complementation in yeast the biological activity of Tpt1 orthologs from three Mucorales species. Recombinant M. circinelloides Tpt1 has vigorous NAD+-dependent RNA 2'-phosphotransferase activity in vitro.


Assuntos
Mucorales , Animais , Humanos , Mucorales/genética , Mucorales/metabolismo , NAD/metabolismo , RNA/genética , RNA de Transferência/genética , RNA de Transferência/metabolismo , RNA Ligase (ATP)/genética , RNA Ligase (ATP)/metabolismo , Saccharomyces cerevisiae/metabolismo , Ligases , Polinucleotídeo 5'-Hidroxiquinase/química , Splicing de RNA , Mamíferos/genética
2.
Proc Natl Acad Sci U S A ; 120(44): e2312999120, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37883434

RESUMO

Tpt1 is an essential agent of fungal and plant tRNA splicing that removes an internal RNA 2'-phosphate generated by tRNA ligase. Tpt1 also removes the 2'-phosphouridine mark installed by Ark1 kinase in the V-loop of archaeal tRNAs. Tpt1 performs a two-step reaction in which the 2'-PO4 attacks NAD+ to form an RNA-2'-phospho-(ADP-ribose) intermediate, and transesterification of the ADP-ribose O2″ to the RNA 2'-phosphodiester yields 2'-OH RNA and ADP-ribose-1″,2″-cyclic phosphate. Here, we present structures of archaeal Tpt1 enzymes, captured as product complexes with ADP-ribose-1″-PO4, ADP-ribose-2″-PO4, and 2'-OH RNA, and as substrate complexes with 2',5'-ADP and NAD+, that illuminate 2'-PO4 junction recognition and catalysis. We show that archaeal Tpt1 enzymes can use the 2'-PO4-containing metabolites NADP+ and NADPH as substrates for 2'-PO4 transfer to NAD+. A role in 2'-phospho-NADP(H) dynamics provides a rationale for the prevalence of Tpt1 in taxa that lack a capacity for internal RNA 2'-phosphorylation.


Assuntos
NAD , RNA , RNA/metabolismo , NADP , NAD/metabolismo , RNA de Transferência/genética , Adenosina Difosfato Ribose/metabolismo , Fosfatos/metabolismo
3.
RNA ; 28(11): 1509-1518, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36130078

RESUMO

Pyrococcus horikoshii (Pho) RtcB exemplifies a family of binuclear transition metal- and GTP-dependent RNA ligases that join 3'-phosphate and 5'-OH ends via RtcB-(histidinyl-N)-GMP and RNA3'pp5'G intermediates. We find that guanylylation of PhoRtcB is optimal with manganese and less effective with cobalt and nickel. Zinc and copper are inactive and potently inhibit manganese-dependent guanylylation. We report crystal structures of PhoRtcB in complexes with GTP and permissive (Mn, Co, Ni) or inhibitory (Zn, Cu) metals. Zinc and copper occupy the M1 and M2 sites adjacent to the GTP phosphates, as do manganese, cobalt, and nickel. The identity/positions of enzymic ligands for M1 (His234, His329, Cys98) and M2 (Cys98, Asp95, His203) are the same for permissive and inhibitory metals. The differences pertain to: (i) the coordination geometries and phosphate contacts of the metals; and (ii) the orientation of the His404 nucleophile with respect to the GTP α-phosphate and pyrophosphate leaving group. M2 metal coordination geometry correlates with metal cofactor activity, whereby inhibitory Zn2 and Cu2 assume a tetrahedral configuration and contact only the GTP γ-phosphate, whereas Mn2, Co2, and Ni2 coordination complexes are pentahedral and contact the ß- and γ-phosphates. The His404-Nε-Pα-O(α-ß) angle is closer to apical in Mn (179°), Co (171°), and Ni (169°) structures than in Zn (160°) and Cu (155°) structures. The octahedral Mn1 geometry in our RtcB•GTP•Mn2+ structure, in which Mn1 contacts α-, ß-, and γ-phosphates, transitions to a tetrahedral configuration after formation of RtcB•(His404)-GMP•Mn2+ and departure of pyrophosphate.


Assuntos
Difosfatos , Manganês , Cátions Bivalentes , Níquel , Cobre , Guanosina Trifosfato , RNA Ligase (ATP)/genética , RNA/química , Zinco , Cobalto
4.
RNA ; 2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33509912

RESUMO

The enzyme Tpt1 is an essential agent of fungal tRNA splicing that removes an internal RNA 2'-PO4 generated by fungal tRNA ligase. Tpt1 performs a two-step reaction in which: (i) the 2'-PO4 attacks NAD+ to form an RNA-2'-phospho-(ADP-ribose) intermediate; and (ii) transesterification of the ADP-ribose O2'' to the RNA 2'-phosphodiester yields 2'-OH RNA and ADP-ribose-1'',2''-cyclic phosphate. Because Tpt1 does not participate in metazoan tRNA splicing, and Tpt1 knockout has no apparent impact on mammalian physiology, Tpt1 is considered a potential anti-fungal drug target. Here we characterize Tpt1 enzymes from four human fungal pathogens: Coccidioides immitis, the agent of Valley Fever; Aspergillus fumigatus and Candida albicans, which cause invasive, often fatal, infections in immunocompromised hosts; and Candida auris, an emerging pathogen that is resistant to current therapies. All four pathogen Tpt1s were active in vivo in complementing a lethal Saccharomyces cerevisiae tpt1∆ mutation and in vitro in NAD+-dependent conversion of a 2'-PO4 to a 2'-OH. The fungal Tpt1s utilized nicotinamide hypoxanthine dinucleotide as a substrate in lieu of NAD+, albeit with much lower affinity, whereas nicotinic acid adenine dinucleotide was ineffective. Fungal Tpt1s efficiently removed an internal ribonucleotide 2'-phosphate from an otherwise all-DNA substrate. Replacement of an RNA ribose-2'-PO4 nucleotide with arabinose-2'-PO4 diminished enzyme specific activity by ≥2000-fold and selectively slowed step 2 of the reaction pathway, resulting in transient accumulation of an ara-2'-phospho-ADP-ribosylated intermediate. Our results implicate the 2'-PO4 ribonucleotide as the principal determinant of fungal Tpt1 nucleic acid substrate specificity.

5.
Nucleic Acids Res ; 49(17): 9607-9624, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-33880546

RESUMO

Tpt1, an essential component of the fungal and plant tRNA splicing machinery, catalyzes transfer of an internal RNA 2'-PO4 to NAD+ yielding RNA 2'-OH and ADP-ribose-1',2'-cyclic phosphate products. Here, we report NMR structures of the Tpt1 ortholog from the bacterium Runella slithyformis (RslTpt1), as apoenzyme and bound to NAD+. RslTpt1 consists of N- and C-terminal lobes with substantial inter-lobe dynamics in the free and NAD+-bound states. ITC measurements of RslTpt1 binding to NAD+ (KD ∼31 µM), ADP-ribose (∼96 µM) and ADP (∼123 µM) indicate that substrate affinity is determined primarily by the ADP moiety; no binding of NMN or nicotinamide is observed by ITC. NAD+-induced chemical shift perturbations (CSPs) localize exclusively to the RslTpt1 C-lobe. NADP+, which contains an adenylate 2'-PO4 (mimicking the substrate RNA 2'-PO4), binds with lower affinity (KD ∼1 mM) and elicits only N-lobe CSPs. The RslTpt1·NAD+ binary complex reveals C-lobe contacts to adenosine ribose hydroxyls (His99, Thr101), the adenine nucleobase (Asn105, Asp112, Gly113, Met117) and the nicotinamide riboside (Ser125, Gln126, Asn163, Val165), several of which are essential for RslTpt1 activity in vivo. Proximity of the NAD+ ß-phosphate to ribose-C1″ suggests that it may stabilize an oxocarbenium transition-state during the first step of the Tpt1-catalyzed reaction.


Assuntos
Proteínas de Bactérias/química , Cytophagaceae/enzimologia , NAD/química , Fosfotransferases/química , Apoenzimas/química , Proteínas de Bactérias/genética , Sítios de Ligação , Ligantes , Modelos Moleculares , Mutagênese , Ressonância Magnética Nuclear Biomolecular , Nucleotídeos/química , Fosfotransferases/genética , Ligação Proteica , Conformação Proteica , RNA/metabolismo
6.
RNA ; 26(4): 373-381, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31932322

RESUMO

The enzyme Tpt1 removes an internal RNA 2'-PO4 via a two-step reaction in which: (i) the 2'-PO4 attacks NAD+ to form an RNA-2'-phospho-(ADP-ribose) intermediate and nicotinamide; and (ii) transesterification of the ADP-ribose O2″ to the RNA 2'-phosphodiester yields 2'-OH RNA and ADP-ribose-1″,2″-cyclic phosphate. Because step 2 is much faster than step 1, the ADP-ribosylated RNA intermediate is virtually undetectable under normal circumstances. Here, by testing chemically modified nucleic acid substrates for activity with bacterial Tpt1 enzymes, we find that replacement of the ribose-2'-PO4 nucleotide with arabinose-2'-PO4 selectively slows step 2 of the reaction pathway and results in the transient accumulation of high levels of the reaction intermediate. We report that replacing the NMN ribose of NAD+ with 2'-fluoroarabinose (thereby eliminating the ribose O2″ nucleophile) results in durable trapping of RNA-2'-phospho-(ADP-fluoroarabinose) as a "dead-end" product of step 1. Tpt1 enzymes from diverse taxa differ in their capacity to use ara-2″F-NAD+ as a substrate.


Assuntos
Arabinose/análogos & derivados , Proteínas de Bactérias/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , RNA/metabolismo , ADP-Ribosilação , Arabinose/metabolismo , Chaetomium/enzimologia , Clostridium thermocellum/enzimologia , Cytophagaceae/enzimologia , Proteínas Fúngicas/metabolismo , NAD/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/química , RNA/química
7.
Proteomics ; 16(7): 1100-10, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26841191

RESUMO

Small archeal modifier proteins (SAMPs) are related to ubiquitin in tertiary structure and in their isopeptide linkage to substrate proteins. SAMPs also function in sulfur mobilization to form biomolecules such as molybdopterin and thiolated tRNA. While SAMP1 is essential for anaerobic growth and covalently attached to lysine residues of its molybdopterin synthase partner MoaE (K240 and K247), the full diversity of proteins modified by samp1ylation is not known. Here, we expand the knowledge of proteins isopeptide linked to SAMP1. LC-MS/MS analysis of -Gly-Gly signatures derived from SAMP1 S85R conjugates cleaved with trypsin was used to detect sites of sampylation (23 lysine residues) that mapped to 11 target proteins. Many of the identified target proteins were associated with sulfur metabolism and oxidative stress including MoaE, SAMP-activating E1 enzyme (UbaA), methionine sulfoxide reductase homologs (MsrA and MsrB), and the Fe-S assembly protein SufB. Several proteins were found to have multiple sites of samp1ylation, and the isopeptide linkage at SAMP3 lysines (K18, K55, and K62) revealed hetero-SAMP chain topologies. Follow-up affinity purification of selected protein targets (UbaA and MoaE) confirmed the LC-MS/MS results. 3D homology modeling suggested sampy1ylation is autoregulatory in inhibiting the activity of its protein partners (UbaA and MoaE), while occurring on the surface of some protein targets, such as SufB and MsrA/B. Overall, we provide evidence that SAMP1 is a ubiquitin-like protein modifier that is relatively specific in tagging its protein partners as well as proteins associated with oxidative stress response.


Assuntos
Proteínas Arqueais/química , Proteínas Arqueais/metabolismo , Haloferax volcanii/metabolismo , Estresse Oxidativo/fisiologia , Proteoma/metabolismo , Enxofre/metabolismo , Haloferax volcanii/química , Modelos Moleculares , Proteoma/análise , Proteoma/química , Enxofre/química , Ubiquitina
8.
mBio ; 14(4): e0085223, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37458473

RESUMO

Nucleases are strictly regulated and often localized in the cell to avoid the uncontrolled degradation of DNA and RNA. Here, a new type of nuclease complex, composed of RecJ3, RecJ4, and aRNase J, was identified through its ATP-dependent association with the ubiquitin-like SAMP1 and AAA-ATPase Cdc48a. The complex was discovered in Haloferax volcanii, an archaeon lacking an RNA exosome. Genetic analysis revealed aRNase J to be essential and RecJ3, RecJ4, and Cdc48a to function in the recovery from DNA damage including genotoxic agents that generate double-strand breaks. The RecJ3:RecJ4:aRNase J complex (isolated in 2:2:1 stoichiometry) functioned primarily as a 3'-5' exonuclease in hydrolyzing RNA and ssDNA, with the mechanism non-processive for ssDNA. aRNase J could also be purified as a homodimer that catalyzed endoribonuclease activity and, thus, was not restricted to the 5'-3' exonuclease activity typical of aRNase J homologs. Moreover, RecJ3 and RecJ4 could be purified as a 560-kDa subcomplex in equimolar subunit ratio with nuclease activities mirroring the full RecJ3/4-aRNase J complex. These findings prompted reconstitution assays that suggested RecJ3/4 could suppress, alter, and/or outcompete the nuclease activities of aRNase J. Based on the phenotypic results, this control mechanism of aRNase J by RecJ3/4 is not necessary for cell growth but instead appears important for DNA repair. IMPORTANCE Nucleases are critical for various cellular processes including DNA replication and repair. Here, a dynamic type of nuclease complex is newly identified in the archaeon Haloferax volcanii, which is missing the canonical RNA exosome. The complex, composed of RecJ3, RecJ4, and aRNase J, functions primarily as a 3'-5' exonuclease and was discovered through its ATP-dependent association with the ubiquitin-like SAMP1 and Cdc48a. aRNase J alone forms a homodimer that has endonuclease function and, thus, is not restricted to 5'-3' exonuclease activity typical of other aRNase J enzymes. RecJ3/4 appears to suppress, alter, and/or outcompete the nuclease activities of aRNase J. While aRNase J is essential for growth, RecJ3/4, Cdc48a, and SAMPs are important for recovery against DNA damage. These biological distinctions may correlate with the regulated nuclease activity of aRNase J in the RecJ3/4-aRNaseJ complex.


Assuntos
Haloferax volcanii , Haloferax volcanii/genética , Complexo Multienzimático de Ribonucleases do Exossomo/genética , Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , Fosfodiesterase I/genética , Fosfodiesterase I/metabolismo , Ubiquitina/metabolismo , Dano ao DNA , Exonucleases/genética , Exonucleases/metabolismo , Endonucleases/genética , Endonucleases/metabolismo , RNA/metabolismo , Trifosfato de Adenosina/metabolismo
9.
Genes (Basel) ; 9(11)2018 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-30463375

RESUMO

Halophilic archaea thrive in hypersaline conditions associated with desiccation, ultraviolet (UV) irradiation and redox active compounds, and thus are naturally tolerant to a variety of stresses. Here, we identified mutations that promote enhanced tolerance of halophilic archaea to redox-active compounds using Haloferax volcanii as a model organism. The strains were isolated from a library of random transposon mutants for growth on high doses of sodium hypochlorite (NaOCl), an agent that forms hypochlorous acid (HOCl) and other redox acid compounds common to aqueous environments of high concentrations of chloride. The transposon insertion site in each of twenty isolated clones was mapped using the following: (i) inverse nested two-step PCR (INT-PCR) and (ii) semi-random two-step PCR (ST-PCR). Genes that were found to be disrupted in hypertolerant strains were associated with lysine deacetylation, proteasomes, transporters, polyamine biosynthesis, electron transfer, and other cellular processes. Further analysis revealed a ΔpsmA1 (α1) markerless deletion strain that produces only the α2 and ß proteins of 20S proteasomes was hypertolerant to hypochlorite stress compared with wild type, which produces α1, α2, and ß proteins. The results of this study provide new insights into archaeal tolerance of redox active compounds such as hypochlorite.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA