Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
1.
Acc Chem Res ; 57(6): 845-854, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38366970

RESUMO

ConspectusMass spectrometry is a powerful analytical method capable of identifying compounds given a minute amount of material. The fragmentation pattern that results following molecular activation serves as a fingerprint that can be matched to a database compound for identification. Over the past half century, studies have addressed and, in many cases, named the chemical reactions that lead to some of the principal fragment ions. Theories have been developed to predict the observed fragmentation patterns, many of which assume that energy redistributes prior to dissociation. However, the existence of rearrangements and nonergodic processes complicates the prediction of fragmentation patterns and the identification of compounds that have yet to be entered into a curated database. To date, very few studies have addressed the time-dependent nature of the fragmentation of radical cations and, in particular, processes occurring with picosecond or shorter time scales where one expects to find nonergodic reactions.This Account focuses on a novel approach that enables tracking of molecular fragmentation in electron-ionization mass spectrometry with ultrafast time resolution. The two challenges that have prevented the time-resolved studies following electron ionization are the random impact parameter and moment of ionization of each molecule. In addition, medium-sized molecules can produce fragmentation patterns with tens if not hundreds of product ions. Spectroscopically interrogating all of these ions as a function of time is another major challenge. We describe strong field disruptive probing, a method that ionizes molecules on a femtosecond time scale and allows us to track in time the formation of all fragment ions simultaneously.Molecular fragmentation following ionization can occur on a very wide range of time scales. Metastable ions can survive from nanoseconds to microseconds; reactions that depend on vibrational energy redistribution can take picoseconds to nanoseconds; and direct dissociation processes and some rearrangements can take place in femtoseconds to picoseconds. All of these processes depend on the dynamics that occur during attoseconds and femtoseconds following the ionization process. Following a discussion of these time scales, we provide three examples of fragmentations that have been studied with femtosecond time resolution. Each of these examples include unforeseen reaction dynamics that involve a nonergodic process, highlighting the importance of time resolution in mass spectrometry. Finally, we explore future challenges and unresolved questions in mass spectrometry and, more broadly, in the domain of electron-initiated chemical reactions.

2.
J Phys Chem A ; 127(41): 8633-8638, 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37813385

RESUMO

We examine the possibility that three hydrogen atoms in one plane of the cyclopropane dication come together in a concerted "ring-closing" mechanism to form H3+, a crucial cation in interstellar gas-phase chemistry. Ultrafast strong-field ionization followed by disruptive probing measurements indicates that the formation time of H3+ is 249 ± 16 fs. This time scale is not consistent with a concerted mechanism, but rather a process that is preceded by ring opening. Measurements on propene, an isomer of cyclopropane, reveal the H3+ formation time to be 225 ± 13 fs, a time scale similar to the H3+ formation time in cyclopropane. Ab initio molecular dynamics simulations and the fact that both dications share a common potential energy surface support the ring-opening mechanism. The reaction mechanism following double ionization of cyclopropane involves ring opening, then H-migration, and roaming of a neutral H2 molecule, which then abstracts a proton to form H3+. These results further our understanding of complex interstellar chemical reactions and gas-phase reaction dynamics relevant to electron ionization mass spectrometry.

3.
J Phys Chem A ; 126(47): 8851-8858, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36383030

RESUMO

Identifying and quantifying mixtures of compounds with very similar fragmentation patterns in their mass spectra presents a unique and challenging problem. In particular, the mass spectra of most per- and poly-fluoroalkyl substances (PFAS) lack a molecular ion. This complicates their identification, especially when using the absence of chromatographic separation. Here, we focus on linear, nonpolar, short-chain PFAS, which have received less attention than amphipathic PFAS despite their longer environmental lifetimes and greater global warming potentials. We identify and quantify n-C5F12 and n-C6F14 in binary mixtures by analyzing small changes in abundances of the main fragment ions following femtosecond tunnel laser ionization, without the need of chromatographic separation. Time-resolved femtosecond ionization mass spectrometry reveals that the metastable cation of both compounds undergoes predissociation within 1-2 ps of ion formation, with yields of C3F7+ showing evidence of coherent vibrational dynamics. These coherent oscillations are compared to low-level ion-state calculations and supported the idea that the oscillations in the C3F7+ ion yield are due to vibrations in the C5F12+• and C6F14+• radical cations and are associated with the predissociation dynamics of the metastable molecular ion. Surprisingly, we find that the fragment ions used for quantifying the mixtures have similar fragmentation dynamics. Conversely, the odd-electron C2F4+• fragment shows different time dependence between the two compounds, yet has negligible difference in the relative ion yield between the two compounds. Our findings indicate that femtosecond laser ionization may be a useful tool for identifying and quantifying mixtures of PFAS without the need of chromatography or high-resolution mass spectrometry.


Assuntos
Fluorocarbonos , Fluorocarbonos/análise , Espectrometria de Massas/métodos , Elétrons , Cátions
4.
J Chem Phys ; 157(21): 214304, 2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36511542

RESUMO

Strong-field ionization, involving tunnel ionization and electron rescattering, enables femtosecond time-resolved dynamics measurements of chemical reactions involving radical cations. Here, we compare the formation of CH3S+ following the strong-field ionization of the isomers CH3SCN and CH3NCS. The former involves the release of neutral CN, while the latter involves an intramolecular rearrangement. We find the intramolecular rearrangement takes place on a single picosecond timescale and exhibits vibrational coherence. Density functional theory and coupled-cluster calculations on the neutral and singly ionized species help us determine the driving force responsible for intramolecular rearrangement in CH3NCS. Our findings illustrate the complexity that accompanies radical cation chemistry following electron ionization and demonstrate a useful tool for understanding cation dynamics after ionization.

5.
Opt Express ; 29(10): 14314-14325, 2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-33985154

RESUMO

A pulse-shaper-based method for spectral phase measurement and compression with milliradian precision is proposed and tested experimentally. Measurements of chirp and third-order dispersion are performed and compared to theoretical predictions. The single-digit milliradian accuracy is benchmarked by a group velocity dispersion measurement of fused silica.

6.
J Phys Chem A ; 125(45): 9770-9784, 2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34747598

RESUMO

We report on the changes in the dual fluorescence of two cyanine dyes IR144 and IR140 as a function of viscosity and probe their internal conversion dynamics from S2 to S1 via their dependence on a femtosecond laser pulse chirp. Steady-state and time-resolved measurements performed in methanol, ethanol, propanol, ethylene glycol, and glycerol solutions are presented. Quantum calculations reveal the presence of three excited states responsible for the experimental observations. Above the first excited state, we find an excited state, which we designate as S1', that relaxes to the S1 minimum, and we find that the S2 state has two stable configurations. Chirp-dependence measurements, aided by numerical simulations, reveal how internal conversion from S2 to S1 depends on solvent viscosity and pulse duration. By combining solvent viscosity, transform-limited pulses, and chirped pulses, we obtain an overall change in the S2/S1 population ratio of a factor of 86 and 55 for IR144 and IR140, respectively. The increase in the S2/S1 ratio is explained by a two-photon transition to a higher excited state. The ability to maximize the population of higher excited states by delaying or bypassing nonradiative relaxation may lead to the increased efficiency of photochemical processes.

7.
J Chem Phys ; 155(4): 044303, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34340396

RESUMO

Ultrafast tunnel ionization enables femtosecond time-resolved dynamic measurements of the retro-Diels-Alder reactions of positively charged cyclohexene, norbornene, and dicyclopentadiene. Unlike the reaction times of 500-600 ps that are observed following UV excitation of neutral species, on the ionic potential energy surfaces, these reactions occur on a single picosecond timescale and, in some cases, exhibit vibrational coherence. In the case of norbornene, a 270 cm-1 vibrational mode is found to modulate the retro-Diels-Alder reaction.

8.
Phys Chem Chem Phys ; 22(35): 19613-19622, 2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-32936138

RESUMO

The significance of solvent structural factors in the excited-state proton transfer (ESPT) reactions of Schiff bases with alcohols is reported here. We use the super photobase FR0-SB and a series of primary, secondary, and tertiary alcohol solvents to illustrate the steric issues associated with solvent to photobase proton transfer. Steady-state and time-resolved fluorescence data show that ESPT occurs readily for primary alcohols, with a probability proportional to the relative -OH concentration. For secondary alcohols, ESPT is greatly diminished, consistent with the barrier heights obtained using quantum chemistry calculations. ESPT is not observed in the tertiary alcohol. We explain ESPT using a model involving an intermediate hydrogen-bonded complex where the proton is "shared" by the Schiff base and the alcohol. The formation of this complex depends on the ability of the alcohol solvent to achieve spatial proximity to and alignment with the FR0-SB* imine lone pair stabilized by the solvent environment.

9.
J Chem Phys ; 153(22): 224301, 2020 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-33317305

RESUMO

Two-photon excitation (TPE) is an attractive means for controlling chemistry in both space and time. Since isoenergetic one- and two-photon excitations (OPE and TPE) in non-centrosymmetric molecules are allowed to reach the same excited state, it is usually assumed that they produce similar excited-state reactivity. We compare the solvent-to-solute excited-state proton transfer of the super photobase FR0-SB following isoenergetic OPE and TPE. We find up to 62% increased reactivity following TPE compared to OPE. From steady-state spectroscopy, we rule out the involvement of different excited states and find that OPE and TPE spectra are identical in non-polar solvents but not in polar ones. We propose that differences in the matrix elements that contribute to the two-photon absorption cross sections lead to the observed enhanced isoenergetic reactivity, consistent with the predictions of our high-level coupled-cluster-based computational protocol. We find that polar solvent configurations favor greater dipole moment change between ground and excited states, which enters the probability for TPE as the absolute value squared. This, in turn, causes a difference in the Franck-Condon region reached via TPE compared to OPE. We conclude that a new method has been found for controlling chemical reactivity via the matrix elements that affect two-photon cross sections, which may be of great utility for spatial and temporal precision chemistry.

10.
J Am Chem Soc ; 141(4): 1735-1741, 2019 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-30580520

RESUMO

Bacteriorhodopsin represents the simplest, and possibly most abundant, phototropic system requiring only a retinal-bound transmembrane protein to convert photons of light to an energy-generating proton gradient. The creation and interrogation of a microbial rhodopsin mimic, based on an orthogonal protein system, would illuminate the design elements required to generate new photoactive proteins with novel function. We describe a microbial rhodopsin mimic, created using a small soluble protein as a template, that specifically photoisomerizes all- trans to 13- cis retinal followed by thermal relaxation to the all- trans isomer, mimicking the bacteriorhodopsin photocycle, in a single crystal. The key element for selective isomerization is a tuned steric interaction between the chromophore and protein, similar to that seen in the microbial rhodopsins. It is further demonstrated that a single mutation converts the system to a protein photoswitch without chromophore photoisomerization or conformational change.


Assuntos
Bacteriorodopsinas/química , Biomimética , Bacteriorodopsinas/metabolismo , Luz , Modelos Moleculares , Movimento , Conformação Proteica , Estereoisomerismo , Temperatura
11.
J Chem Phys ; 150(4): 044303, 2019 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-30709246

RESUMO

Quantum coherent control (QCC) has been successfully demonstrated experimentally and theoretically for two- and three-photon optical excitation of atoms and molecules. Here, we explore QCC using spectral phase functions with a single spectral phase step for controlling the yield of H3 + from methanol under strong laser field excitation. We observe a significant and systematic enhanced production of H3 + when a negative 34 π phase step is applied near the low energy region of the laser spectrum and when a positive 34 π phase step is applied near the high energy region of the laser spectrum. In some cases, most notably the HCO+ fragment, we found the enhancement exceeded the yield measured for transform limited pulses. The observation of enhanced yield is surprising and far from the QCC prediction of yield suppression. The observed QCC enhancement implies an underlying strong field process responsible for polyatomic fragmentation controllable by easy to reproduce shaped pulses.

12.
J Chem Phys ; 149(24): 244310, 2018 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-30599731

RESUMO

Roaming chemical reactions are often associated with neutral molecules. The recent findings of roaming processes in ionic species, in particular, ones that lead to the formation of H3 + under strong-field laser excitation, are of considerable interest. Given that such gas-phase reactions are initiated by double ionization and subsequently facilitated through deprotonation, we investigate the strong-field photodissociation of ethanethiol, also known as ethyl mercaptan, and compare it to results from ethanol. Contrary to expectations, the H3 + yield was found to be an order of magnitude lower for ethanethiol at certain laser field intensities, despite its lower ionization energy and higher acidity compared to ethanol. In-depth analysis of the femtosecond time-resolved experimental findings, supported by ab initio quantum mechanical calculations, provides key information regarding the roaming mechanisms related to H3 + formation. Results of this study on the dynamics of dissociative half-collisions involving H3 +, a vital cation which acts as a Brønsted-Lowry acid protonating interstellar organic compounds, may also provide valuable information regarding the formation mechanisms and observed natural abundances of complex organic molecules in interstellar media and planetary atmospheres.

13.
Angew Chem Int Ed Engl ; 57(45): 14742-14746, 2018 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-30152115

RESUMO

Molecular reactivity can change dramatically with the absorption of a photon due to the difference of the electronic configurations between the excited and ground states. Here we report on the discovery of a modular system (Schiff base formed from an aldehyde and an amine) that upon photoexcitation yields a more basic imine capable of intermolecular proton transfer from protic solvents. Ultrafast dynamics of the excited state conjugated Schiff base reveals the pathway for proton transfer, culminating in a 14-unit increase in pKa to give the excited state pKa * >20 in ethanol.

14.
Opt Express ; 25(6): 5832-5840, 2017 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-28381055

RESUMO

We report the development of a non-contact no-reagents system operating in the eye-safe 1560-1800 nm wavelength range for standoff trace detection of explosives and high-speed imaging. Experimental results are provided for a number of chemicals including explosives on a variety of surfaces at sub-microgram per cm2 concentration. Chemically specific images were collected at 0.06 ms per pixel. Results from this effort indicate that the combination of modern industrial fiber lasers and nonlinear optical spectroscopy can address next generation eye-safe trace detection of chemicals including explosives.


Assuntos
Substâncias Explosivas/análise , Análise Espectral/métodos , Olho , Humanos , Segurança
15.
Opt Express ; 25(1): 320-329, 2017 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-28085826

RESUMO

Ultrashort pulse generation in the 1600 nm wavelength region is required for deep-tissue biomedical imaging. We report on the characterization and adaptive compression of a multi-soliton output spanning >300 nm from a large-mode area photonic-crystal fiber rod for two separate laser setups. Sub-30 fs pulses are generated by first compressing of each soliton individually, and then followed by coherently combining all of the pulses in the train, which are separated by hundreds of femtoseconds. Simulations of the source, together with amplitude and phase coherence measurements are provided.

16.
Phys Chem Chem Phys ; 19(21): 14085-14095, 2017 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-28518192

RESUMO

The optically populated excited state wave packet propagates along multidimensional intramolecular coordinates soon after photoexcitation. This action occurs alongside an intermolecular response from the surrounding solvent. Disentangling the multidimensional convoluted signal enables the possibility to separate and understand the initial intramolecular relaxation pathways over the excited state potential energy surface. Here we track the initial excited state dynamics by measuring the fluorescence yield from the first excited state as a function of time delay between two color femtosecond pulses for several cyanine dyes having different substituents. We find that when the high frequency pulse precedes the low frequency one and for timescales up to 200 fs, the excited state population can be depleted through stimulated emission with efficiency that is dependent on the molecular electronic structure. A similar observation at even shorter times was made by scanning the chirp (frequencies ordering) of a femtosecond pulse. The changes in depletion reflect the rate at which the nuclear coordinates of the excited state leave the Franck-Condon (FC) region and progress towards achieving equilibrium. Through functional group substitution, we explore these dynamic changes as a function of dipolar change following photoexcitation. Density functional theory calculations were performed to provide greater insight into the experimental spectroscopic observations. Complete active space (CAS) self-consistent field and CAS second order perturbation theory calculated potential energy surfaces tracking twisting and pyramidalization confirm that the steeper potential at the FC region leads to the observation of faster wave packet dynamics.

17.
Opt Lett ; 41(1): 131-4, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26696176

RESUMO

We report the use of binary phase shaping to mitigate pulse degradation and self-focusing in fused silica. The results of simulation and estimated mitigation efficiency are supported by experimental results using both chirped and binary phase-shaped pulses. Possible applications are considered.

18.
J Phys Chem A ; 120(43): 8529-8536, 2016 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-27744700

RESUMO

While the interaction of atoms in strong fields is well understood, the same cannot be said about molecules. We consider how dissociative ionization of molecules depends on the quality of the femtosecond laser pulses, in particular, the presence of third- and fourth-order dispersion. We find that high-order dispersion (HOD) unexpectedly results in order-of-magnitude enhanced ion yields, along with the factor of 3 greater kinetic energy release compared to transform-limited pulses with equal peak intensities. The magnitude of these effects is not caused by increased pulse duration. We evaluate the role of pulse pedestals produced by HOD and other pulse shaping approaches, for a number of molecules including acetylene, methanol, methylene chloride, acetonitrile, toluene, and o-nitrotoluene, and discuss our findings in terms of processes such as prealignment, preionization, and bond softening. We conclude, based on the quasi-symmetric temporal dependence of the observed enhancements that cascade ionization is likely responsible for the large accumulation of charge prior to the ejection of energetic fragments along the laser polarization axis.

19.
J Phys Chem A ; 120(12): 2002-8, 2016 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-26959342

RESUMO

Controlling stimulated emission is of importance because it competes with absorption and fluorescence under intense laser excitation. We performed resonant nonlinear optical spectroscopy measurements using femtosecond pulses shaped by π- or π/2-step phase functions and carried out calculations based on density matrix representation to elucidate the experimental results. In addition, we compared enhancements obtained when using other pulse shaping functions (chirp, third-order dispersion, and a time-delayed probe). The light transmitted through the high optical density solution was dominated by an intense stimulated emission feature that was 14 times greater for shaped pulses than for transform limited pulses. Coherent enhancement depending on the frequency, temporal, and phase characteristics of the shaped pulse is responsible for the experimental observations.

20.
J Phys Chem A ; 120(11): 1876-85, 2016 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-26935762

RESUMO

Fast population transfer from higher to lower excited states occurs via internal conversion (IC) and is the basis of Kasha's rule, which states that spontaneous emission takes place from the lowest excited state of the same multiplicity. Photonic control over IC is of interest because it would allow direct influence over intramolecular nonradiative decay processes occurring in condensed phase. Here we tracked the S2 and S1 fluorescence yield for different cyanine dyes in solution as a function of linear chirp. For the cyanine dyes with polar solvation response IR144 and meso-piperidine substituted IR806, increased S2 emission was observed when using transform limited pulses, whereas chirped pulses led to increased S1 emission. The nonpolar solvated cyanine IR806, on the other hand, did not show S2 emission. A theoretical model, based on a nonperturbative solution of the equation of motion for the density matrix, is offered to explain and simulate the anomalous chirp dependence. Our findings, which depend on pulse properties beyond peak intensity, offer a photonic method to control S2 population thereby opening the door for the exploration of photochemical processes initiated from higher excited states.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA