Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
J Pineal Res ; 76(4): e12953, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38682544

RESUMO

The search for melatonin receptor agonists formed the main part of melatonin medicinal chemistry programs for the last three decades. In this short review, we summarize the two main aspects of these programs: the development of all the necessary tools to characterize the newly synthesized ligands at the two melatonin receptors MT1 and MT2, and the medicinal chemist's approaches to find chemically diverse ligands at these receptors. Both strategies are described. It turns out that the main source of tools were industrial laboratories, while the medicinal chemistry was mainly carried out in academia. Such complete accounts are interesting, as they delineate the spirits in which the teams were working demonstrating their strength and innovative character. Most of the programs were focused on nonselective agonists and few of them reached the market. In contrast, discovery of MT1-selective agonists and melatonergic antagonists with proven in vivo activity and MT1 or MT2-selectivity is still in its infancy, despite the considerable interest that subtype selective compounds may bring in the domain, as the physiological respective roles of the two subtypes of melatonin receptors, is still poorly understood. Poly-pharmacology applications and multitarget ligands have also been considered.


Assuntos
Receptor MT2 de Melatonina , Ligantes , Humanos , Animais , Receptor MT2 de Melatonina/metabolismo , Receptor MT2 de Melatonina/agonistas , Receptor MT1 de Melatonina/metabolismo , Receptor MT1 de Melatonina/agonistas , Receptor MT1 de Melatonina/antagonistas & inibidores , Receptores de Melatonina/metabolismo , Receptores de Melatonina/agonistas , Melatonina/metabolismo , História do Século XX
2.
Respir Res ; 24(1): 63, 2023 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-36842969

RESUMO

BACKGROUND: Asthma is a heterogeneous disease with high morbidity. Advancement in high-throughput multi-omics approaches has enabled the collection of molecular assessments at different layers, providing a complementary perspective of complex diseases. Numerous computational methods have been developed for the omics-based patient classification or disease outcome prediction. Yet, a systematic benchmarking of those methods using various combinations of omics data for the prediction of asthma development is still lacking. OBJECTIVE: We aimed to investigate the computational methods in disease status prediction using multi-omics data. METHOD: We systematically benchmarked 18 computational methods using all the 63 combinations of six omics data (GWAS, miRNA, mRNA, microbiome, metabolome, DNA methylation) collected in The Vitamin D Antenatal Asthma Reduction Trial (VDAART) cohort. We evaluated each method using standard performance metrics for each of the 63 omics combinations. RESULTS: Our results indicate that overall Logistic Regression, Multi-Layer Perceptron, and MOGONET display superior performance, and the combination of transcriptional, genomic and microbiome data achieves the best prediction. Moreover, we find that including the clinical data can further improve the prediction performance for some but not all the omics combinations. CONCLUSIONS: Specific omics combinations can reach the optimal prediction of asthma development in children. And certain computational methods showed superior performance than other methods.


Assuntos
Asma , MicroRNAs , Gravidez , Humanos , Feminino , Criança , Benchmarking , Genômica/métodos , Asma/diagnóstico , Asma/epidemiologia , Asma/genética , Prognóstico
3.
Arch Pharm (Weinheim) ; 356(9): e2300149, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37339785

RESUMO

Anticancer drug conjugates are an emerging approach for future cancer treatment. Here, we report a series of hybrid ligands merging the neurohormone melatonin with the approved histone deacetylase (HDAC) inhibitor vorinostat, using melatonin's amide side chain (3a-e), its indolic nitrogen (5a-d), and its ether oxygen (7a-d) as attachment points. Several hybrid ligands showed higher potency thanvorinostat in both HDAC inhibition and cellular assays on different cultured cancer cell lines. In the most potent HDAC1 and HDAC6 inhibitors, 3e, 5c, and 7c, the hydroxamic acid moiety of vorinostat is linked to melatonin through a hexamethylene spacer. Hybrid ligands 5c and 7c were also found to be potent growth inhibitors of MCF-7, PC-3M-Luc, and HL-60 cancer cell lines. As these compounds showed only weak agonist activity at melatonin MT1 receptors, the findings indicate that their anticancer actions are driven by HDAC inhibition.


Assuntos
Antineoplásicos , Melatonina , Neoplasias , Vorinostat/farmacologia , Histona Desacetilases/metabolismo , Histona Desacetilases/farmacologia , Melatonina/farmacologia , Ligantes , Relação Estrutura-Atividade , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Ácidos Hidroxâmicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Histona Desacetilase 1/metabolismo , Histona Desacetilase 1/farmacologia , Desacetilase 6 de Histona
4.
Nat Prod Rep ; 39(10): 1910-1937, 2022 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-35380133

RESUMO

Covering: up to November 2021Since its isolation in 1818, strychnine has attracted the attention of a plethora of chemists and pharmacologists who have established its structure, developed total syntheses, and examined its complex pharmacology. While numerous reviews on structure elucidation and total synthesis of strychnine are available, reports on structure-activity relationships (SARs) of this fascinating alkaloid are rare. In this review, we present and discuss structures, synthetic approaches, metabolic transformations, and the diverse pharmacological actions of strychnine and its mono- and dimeric analogues. Particular attention is given to its SARs at glycine receptors (GlyRs) in light of recently published high-resolution structures of strychnine-GlyR complexes. Other pharmacological actions of strychnine and its derivatives, such as their antagonistic properties at nicotinic acetylcholine receptors (nAChRs), allosteric modulation of muscarinic acetylcholine receptors as well as anti-cancer and anti-plasmodial effects are also critically reviewed, and possible future developments in the field are discussed.


Assuntos
Receptores Nicotínicos , Estricnina , Estricnina/farmacologia , Estricnina/metabolismo , Receptores de Glicina/metabolismo , Relação Estrutura-Atividade , Receptores Nicotínicos/metabolismo , Receptores Muscarínicos/metabolismo
5.
J Nat Prod ; 84(2): 382-394, 2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33596384

RESUMO

Strychnine is the prototypic antagonist of glycine receptors, a family of pentameric ligand-gated ion channels. Recent high-resolution structures of homomeric glycine receptors have confirmed the presence of five orthosteric binding sites located in the extracellular subunit interfaces of the receptor complex that are targeted by strychnine. Here, we report the synthesis and extensive pharmacological evaluation of bivalent ligands composed of two strychnine pharmacophores connected by appropriate spacers optimized toward simultaneous binding to two adjacent orthosteric sites of homomeric α1 glycine receptors. In all bivalent ligands, the two strychnine units were linked through C-2 by amide spacers of various lengths ranging from 6 to 69 atoms. Characterization of the compounds in two functional assays and in a radioligand binding assay indicated that compound 11a, with a spacer consisting of 57 atoms, may be capable of bridging the homomeric α1 GlyRs by simultaneous occupation of two adjacent strychnine-binding sites. The findings are supported by docking experiments to the crystal structure of the homomeric glycine receptor. Based on its unique binding mode, its relatively high binding affinity and antagonist potency, and its slow binding kinetics, the bivalent strychnine analogue 11a could be a valuable tool to study the functional properties of glycine receptors.


Assuntos
Receptores de Glicina/antagonistas & inibidores , Estricnina/análogos & derivados , Sítios de Ligação , Humanos , Ligantes , Simulação de Acoplamento Molecular , Estrutura Terciária de Proteína , Ensaio Radioligante
6.
J Pineal Res ; 69(3): e12672, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32531076

RESUMO

Melatonin MT1 and MT2 receptor ligands have been vigorously explored for the last 4 decades. Inspection of approximately 80 publications in the field revealed that most melatonergic ligands were structural analogues of melatonin combining three essential features of the parent compound: an aromatic ring bearing a methoxy group and an amide side chain in a relative arrangement similar to that present in melatonin. While several series of MT2 -selective agents-agonists, antagonists, or partial agonists-were reported, the field was lacking MT1 -selective agents. Herein, we describe various approaches toward the development of melatonergic ligands, keeping in mind that most of the molecules/pharmacophores obtained were essentially melatonin copies, even though diverse tri- or tetra-cyclic compounds were explored. In addition to lack of structural diversity, only few studies examined the activity of the reported melatonergic ligands in vivo. Moreover, an extensive pharmacological characterization including biopharmaceutical stability, pharmacokinetic properties, specificity toward other major receptors to name a few remained scarce. For example, many of the antagonists described were not stable in vivo, were not selective for the melatonin receptor subtype of interest, and were not fully characterized from a pharmacological standpoint. Indeed, virtual screening of large compound libraries has led to the recent discovery of potent and selective melatonin receptor agonists and partial agonists of new chemotypes. Having said this, the melatonergic field is still lacking subtype-selective melatonin receptor antagonists "active" in vivo, which are critical to our understanding of melatonin and melatonin receptors' role in basic physiology and disease.


Assuntos
Melatonina/química , Receptor MT1 de Melatonina , Receptor MT2 de Melatonina , Animais , Humanos , Ligantes , Receptor MT1 de Melatonina/agonistas , Receptor MT1 de Melatonina/antagonistas & inibidores , Receptor MT1 de Melatonina/química , Receptor MT2 de Melatonina/agonistas , Receptor MT2 de Melatonina/antagonistas & inibidores , Receptor MT2 de Melatonina/química
7.
Mol Pharmacol ; 96(2): 272-296, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31221824

RESUMO

Tamoxifen is used to prevent and treat estrogen receptor-positive (ER+) breast cancer (BC); however, its chronic use can increase uterine cancer risk and induce tamoxifen resistance. Novel melatonin-tamoxifen drug conjugates may be promising to treat BC and may help offset the adverse effects of tamoxifen usage alone due to the presence of melatonin. We synthesized and screened five drug conjugates (C2, C4, C5, C9, and C15 linked) for their effects on BC cell (MCF-7, tamoxifen-resistant MCF-7, mouse mammary carcinoma, MDA-MB-231, and BT-549) viability, migration, and binding affinity to melatonin receptor 1 (MT1R) and estrogen receptor 1 (ESR1). C4 and C5 demonstrated the most favorable pharmacological characteristics with respect to binding profiles (affinity for ESR1 and MT1R) and their potency/efficacy to inhibit BC cell viability and migration in four phenotypically diverse invasive ductal BC cell lines. C4 and C5 were further assessed for their actions against tamoxifen-resistant MCF-7 cells and a patient-derived xenograft triple-negative BC cell line (TU-BcX-4IC) and for their mechanisms of action using selective mitogen-activated protein kinase kinase MEK1/2, MEK5, and phosphoinositide 3-kinase (PI3K) inhibitors. C4 and C5 inhibited tamoxifen-resistant MCF-7 cells with equal potency (IC50 = 4-8 µM) and efficacy (∼90% inhibition of viability and migration) but demonstrated increased potency (IC50 = 80-211 µM) and efficacy (∼140% inhibition) to inhibit migration versus cell viability (IC50 = 181-304 mM; efficacy ∼80% inhibition) in TU-BcX-4IC cells. Unique pharmacokinetic profiles were observed, with C4 having greater bioavailability than C5. Further assessment of C4 and C5 demonstrates that they create novel pharmacophores within each BC cell that is context specific and involves MEK1/2/pERK1/2, MEK5/pERK5, PI3K, and nuclear factor κB. These melatonin-tamoxifen drug conjugates show promise as novel anticancer drugs and further preclinical and clinical evaluation is warranted.


Assuntos
Antineoplásicos/administração & dosagem , Neoplasias da Mama/tratamento farmacológico , Receptor alfa de Estrogênio/metabolismo , Melatonina/administração & dosagem , Receptor MT1 de Melatonina/metabolismo , Tamoxifeno/administração & dosagem , Animais , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Disponibilidade Biológica , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Células MCF-7 , Melatonina/farmacocinética , Melatonina/farmacologia , Camundongos , Tamoxifeno/farmacocinética , Tamoxifeno/farmacologia
8.
Med Mycol ; 57(Supplement_3): S307-S317, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-31292657

RESUMO

The use of cytotoxic chemotherapy in the treatment of malignant and inflammatory disorders is beset by considerable adverse effects related to nonspecific cytotoxicity. Accordingly, a mechanistic approach to therapeutics has evolved in recent times with small molecular inhibitors of intracellular signaling pathways involved in disease pathogenesis being developed for clinical use, some with unparalleled efficacy and tolerability. Nevertheless, there are emerging concerns regarding an association with certain small molecular inhibitors and opportunistic infections, including invasive fungal diseases. This is perhaps unsurprising, given that the molecular targets of such agents play fundamental and multifaceted roles in orchestrating innate and adaptive immune responses. Nevertheless, some small molecular inhibitors appear to possess intrinsic antifungal activity and may therefore represent novel therapeutic options in future. This is particularly important given that antifungal resistance is a significant, emerging concern. This paper is a comprehensive review of the state-of-the-art in the molecular immunology to fungal pathogens as applied to existing and emerging small molecular inhibitors.


Assuntos
Hospedeiro Imunocomprometido/imunologia , Imunoterapia , Infecções Fúngicas Invasivas/imunologia , Infecções Fúngicas Invasivas/terapia , Antifúngicos/uso terapêutico , Farmacorresistência Fúngica , Humanos , Infecções Fúngicas Invasivas/tratamento farmacológico
9.
J Nat Prod ; 82(8): 2332-2336, 2019 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-31385511

RESUMO

(11S)-11-Aminostrychnine (1) and N-[(11S)-strychnine-11-yl]propionamide (2) were synthesized and characterized as antagonists of homomeric α1 and heteromeric α1ß glycine receptors in a functional fluorescence-based assay and a patch-clamp assay and in radioligand binding studies. The absolute configuration at C-11 of 1 was determined based on vicinal coupling constants and NOESY data. Docking experiments to the orthosteric binding site of the α3 glycine receptor showed a binding mode of compound 2 analogous to that of strychnine, explaining its high antagonistic potency. The findings identify the C-11 amide function of strychnine as a suitable linker group for the future development of dimeric strychnine analogues targeting glycine receptors. The findings extend the SAR of strychnine at glycine receptors.


Assuntos
Amidas/química , Receptores de Glicina/antagonistas & inibidores , Estricnina/análogos & derivados , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Espectroscopia de Prótons por Ressonância Magnética , Relação Estrutura-Atividade , Estricnina/farmacologia
10.
Bioorg Chem ; 85: 349-356, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30658234

RESUMO

A series of dimeric melatonin analogues 3a-e obtained by connecting two melatonin molecules through the methoxy oxygen atoms with spacers spanning 16-24 atoms and the agomelatine dimer 7 were synthesized and characterized in 2-[125-I]-iodomelatonin binding assays, bioluminescence resonance energy transfer (BRET) experiments, and in functional cAMP and ß-arrestin recruitment assays at MT1 and MT2 receptors. The binding affinity of 3a-e generally increased with increasing linker length. Bivalent ligands 3a-e increased BRET signals of MT1 dimers up to 3-fold compared to the monomeric control ligand indicating the simultaneous binding of the two pharmacophores to dimeric receptors. Bivalent ligands 3c and 7 exhibited important changes in functional properties on the Gi/cAMP pathway but not on the ß-arrestin pathway compared to their monomeric counterparts. Interestingly, 3c (20 atoms spacer) shows inverse agonistic properties at MT2 on the Gi/cAMP pathway. In conclusion, these findings indicate that O-linked melatonin dimers are promising tools to develop signaling pathway-based bivalent melatonin receptor ligands.


Assuntos
Melatonina/análogos & derivados , Melatonina/farmacologia , Receptor MT1 de Melatonina/agonistas , Receptor MT2 de Melatonina/agonistas , Técnicas de Transferência de Energia por Ressonância de Bioluminescência , AMP Cíclico/metabolismo , Agonismo Inverso de Drogas , Células HEK293 , Humanos , Ligantes , Melatonina/metabolismo , Estrutura Molecular , Multimerização Proteica/efeitos dos fármacos , Receptor MT1 de Melatonina/metabolismo , Receptor MT2 de Melatonina/metabolismo , beta-Arrestinas/metabolismo
11.
Am J Respir Crit Care Med ; 194(9): 1127-1139, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27163634

RESUMO

RATIONALE: Pulmonary aspergillosis is a lethal mold infection in the immunocompromised host. Understanding initial control of infection and how this is altered in the immunocompromised host are key goals for comprehension of the pathogenesis of pulmonary aspergillosis. OBJECTIVES: To characterize the outcome of human macrophage infection with Aspergillus fumigatus and how this is altered in transplant recipients on calcineurin inhibitor immunosuppressants. METHODS: We defined the outcome of human macrophage infection with A. fumigatus, as well as the impact of calcineurin inhibitors, through a combination of single-cell fluorescence imaging, transcriptomics, proteomics, and in vivo studies. MEASUREMENTS AND MAIN RESULTS: Macrophage phagocytosis of A. fumigatus enabled control of 90% of fungal germination. However, fungal germination in the late phagosome led to macrophage necrosis. During programmed necroptosis, we observed frequent cell-cell transfer of A. fumigatus between macrophages, which assists subsequent control of germination in recipient macrophages. Lateral transfer occurred through actin-dependent exocytosis of the late endosome in a vasodilator-stimulated phosphoprotein envelope. Its relevance to the control of fungal germination was also shown by direct visualization in our zebrafish aspergillosis model in vivo. The calcineurin inhibitor FK506 (tacrolimus) reduced cell death and lateral transfer in vitro by 50%. This resulted in uncontrolled fungal germination in macrophages and also resulted in hyphal escape. CONCLUSIONS: These observations identify programmed, necrosis-dependent lateral transfer of A. fumigatus between macrophages as an important host strategy for controlling fungal germination. This process is critically dependent on calcineurin. Our studies provide fundamental insights into the pathogenesis of pulmonary aspergillosis in the immunocompromised host.


Assuntos
Aspergillus fumigatus/metabolismo , Calcineurina/fisiologia , Morte Celular/fisiologia , Macrófagos/microbiologia , Aspergilose Pulmonar/fisiopatologia , Humanos , Sistema de Sinalização das MAP Quinases/fisiologia , Macrófagos/patologia , Macrófagos/fisiologia , Necrose , Fagocitose/fisiologia , Aspergilose Pulmonar/imunologia , Espécies Reativas de Oxigênio/metabolismo , Esporos Fúngicos/fisiologia
12.
Skeletal Radiol ; 46(12): 1657-1665, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28755280

RESUMO

Magnetic resonance imaging (MRI) of mononeuropathy in muscles with dual innervation depicts geographic denervation corresponding to the affected nerve. Knowledge of the normal distribution of a muscle's neural supply is clinically relevant as partial muscle denervation represents a potential imaging pitfall that can be confused with other pathology, such as muscle strain. This article reviews the normal innervation pattern of extremity muscles with dual supply, providing illustrative examples of mononeuropathy affecting such muscles.


Assuntos
Imageamento por Ressonância Magnética/métodos , Mononeuropatias/diagnóstico por imagem , Denervação Muscular , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/inervação , Humanos
13.
J Nat Prod ; 79(12): 2997-3005, 2016 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-27966945

RESUMO

A series of (E)-11-isonitrosostrychnine oxime ethers, 2-aminostrychnine, (strychnine-2-yl)propionamide, 18-oxostrychnine, and N-propylstrychnine bromide were synthesized and evaluated pharmacologically at human α1 and α1ß glycine receptors in a functional fluorescence-based and a whole-cell patch-clamp assay and in [3H]strychnine binding studies. 2-Aminostrychnine and the methyl, allyl, and propargyl oxime ethers were the most potent α1 and α1ß antagonists in the series, displaying IC50 values similar to those of strychnine at the two receptors. Docking experiments to the strychnine binding site of the crystal structure of the α3 glycine receptor indicated the same orientation of the strychnine core for all analogues. For the most potent oxime ethers, the ether substituent was accommodated in a lipophilic receptor binding pocket. The findings identify the oxime hydroxy group as a suitable attachment point for linking two strychnine pharmacophores by a polymethylene spacer and are, therefore, important for the design of bivalent ligands targeting glycine receptors.


Assuntos
Éteres/síntese química , Oximas/farmacologia , Receptores de Glicina/antagonistas & inibidores , Estricnina , Animais , Sítios de Ligação , Ligação Competitiva , Cristalografia por Raios X , Éteres/química , Éteres/farmacologia , Glicina/análise , Glicina/metabolismo , Humanos , Concentração Inibidora 50 , Ligantes , Conformação Molecular , Estrutura Molecular , Oximas/química , Relação Estrutura-Atividade , Estricnina/análogos & derivados , Estricnina/síntese química , Estricnina/química , Estricnina/farmacologia
14.
J Nat Prod ; 77(9): 2006-13, 2014 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-25192059

RESUMO

A new series of analogues of the calabash curare alkaloid toxiferine I was prepared and pharmacologically evaluated at α7 and muscle-type nAChRs and the allosteric site of muscarinic M2 receptors. The new ligands differ from toxiferine I by the absence of one (2a-c) or two (3a-c) hydroxy groups, saturation of the exocyclic double bonds, and various N-substituents (methyl, allyl, 4-nitrobenzyl). At the muscle-type nAChRs, most ligands showed similar binding to the muscle relaxant alcuronium, indicating neuromuscular blocking activity, with the nonhydroxylated analogues 3b (Ki = 75 nM) and 3c (Ki = 82 nM) displaying the highest affinity. At α7 nAChRs, all ligands showed a moderate to low antagonistic effect, suggesting that the alcoholic functions are not necessary for antagonistic action. Compound 3c exerted the highest preference for the muscle-type nAChRs (Ki = 82 nM) over α7 (IC50 = 21 µM). As for the allosteric site of M2 receptors, binding was found to be dependent on N-substitution rather than on the nature of the side chains. The most potent ligands were the N-allyl analogues 2b and 3b (EC0.5,diss = 12 and 36 nM) and the N-nitrobenzyl derivatives 2c and 3c (EC0.5,diss = 32 and 49 nM). The present findings should help delineate the structural requirements for activity at different types of AChRs and for the design of novel selective ligands.


Assuntos
Receptor Muscarínico M2/química , Toxiferina , Receptor Nicotínico de Acetilcolina alfa7/química , Alcaloides/química , Sítio Alostérico , Humanos , Ligantes , Estrutura Molecular , Músculos/metabolismo , Antagonistas Nicotínicos/farmacologia , Ressonância Magnética Nuclear Biomolecular , Toxiferina/análogos & derivados , Toxiferina/síntese química , Toxiferina/química , Toxiferina/farmacologia
15.
Chem Biodivers ; 11(8): 1256-62, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25146769

RESUMO

Nine strychnine derivatives including neostrychnine, strychnidine, isostrychnine, 21,22-dihydro-21-hydroxy-22-oxo-strychnine, and several hydrogenated analogs were synthesized, and their antagonistic activities at human α1 and α1ß glycine receptors were evaluated. Isostrychnine has shown the best pharmacological profile exhibiting an IC50 value of 1.6 µM at α1 glycine receptors and 3.7-fold preference towards the α1 subtype. SAR Analysis indicates that the lactam moiety and the C(21) = C(22) bond in strychnine are essential structural features for its high antagonistic potency at glycine receptors.


Assuntos
Receptores de Glicina/antagonistas & inibidores , Relação Estrutura-Atividade , Estricnina/análogos & derivados , Técnicas de Química Sintética , Humanos , Concentração Inibidora 50 , Lactamas/química
16.
ACS Pharmacol Transl Sci ; 7(7): 2080-2092, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39022357

RESUMO

In this study, we describe the structure-based development of the first fluorescent ligands targeting the intracellular allosteric binding site (IABS) of the CC chemokine receptor type 1 (CCR1), a G protein-coupled receptor (GPCR) that has been pursued as a drug target in inflammation and immune diseases. Starting from previously reported intracellular allosteric modulators of CCR1, tetramethylrhodamine (TAMRA)-labeled ligands were designed, synthesized, and tested for their suitability as fluorescent tracers to probe binding to the IABS of CCR1. In the course of these studies, we developed LT166 (12) as a highly versatile fluorescent CCR1 ligand, enabling cell-free as well as cellular NanoBRET-based binding studies in a nonradioactive and high-throughput manner. Besides the detection of intracellular allosteric ligands by direct competition with 12, we were also able to monitor the binding of extracellular antagonists due to their positive cooperative binding with 12. Thereby, we provide a straightforward and nonradioactive method to easily distinguish between ligands binding to the IABS of CCR1 and extracellular negative modulators. Further, we applied 12 for the identification of novel chemotypes for intracellular CCR1 inhibition that feature high binding selectivity for CCR1 over CCR2. For one of the newly identified intracellular CCR1 ligands (i.e., 23), we were able to show CCR1 over CCR2 selectivity also on a functional level and demonstrated that this compound inhibits basal ß-arrestin recruitment to CCR1, thereby acting as an inverse agonist. Thus, our fluorescent CCR1 ligand 12 represents a highly promising tool for future studies of CCR1-targeted pharmacology and drug discovery.

17.
Nat Commun ; 15(1): 8220, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39300109

RESUMO

Antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis is a life-threatening autoimmune disease that often results in kidney failure caused by crescentic glomerulonephritis (GN). To date, treatment of most patients with ANCA-GN relies on non-specific immunosuppressive agents, which may have serious adverse effects and be only partially effective. Here, using spatial and single-cell transcriptome analysis, we characterize inflammatory niches in kidney samples from 34 patients with ANCA-GN and identify proinflammatory, cytokine-producing CD4+ and CD8+ T cells as a pathogenic signature. We then utilize these transcriptomic profiles for digital pharmacology and identify ustekinumab, a monoclonal antibody targeting IL-12 and IL-23, as the strongest therapeutic drug to use. Moreover, four patients with relapsing ANCA-GN are treated with ustekinumab in combination with low-dose cyclophosphamide and steroids, with ustekinumab given subcutaneously (90 mg) at weeks 0, 4, 12, and 24. Patients are followed up for 26 weeks to find this treatment well-tolerated and inducing clinical responses, including improved kidney function and Birmingham Vasculitis Activity Score, in all ANCA-GN patients. Our findings thus suggest that targeting of pathogenic T cells in ANCA-GN patients with ustekinumab might represent a potential approach and warrants further investigation in clinical trials.


Assuntos
Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos , Glomerulonefrite , Ustekinumab , Humanos , Ustekinumab/uso terapêutico , Ustekinumab/farmacologia , Glomerulonefrite/tratamento farmacológico , Glomerulonefrite/imunologia , Masculino , Feminino , Pessoa de Meia-Idade , Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos/tratamento farmacológico , Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos/imunologia , Anticorpos Anticitoplasma de Neutrófilos/imunologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/efeitos dos fármacos , Interleucina-12/metabolismo , Idoso , Adulto , Rim/patologia , Rim/efeitos dos fármacos , Rim/imunologia , Ciclofosfamida/uso terapêutico , Ciclofosfamida/farmacologia , Perfilação da Expressão Gênica , Imunossupressores/uso terapêutico , Imunossupressores/farmacologia , Análise de Célula Única
18.
Heart Rhythm ; 21(10): 1914-1922, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38762820

RESUMO

BACKGROUND: Implantable cardioverter-defibrillators last longer, and interest in reliable leads with targeted lead placement is growing. The OmniaSecure defibrillation lead is a novel, small-diameter, catheter-delivered lead designed for targeted placement, based on the established SelectSecure SureScan MRI Model 3830 lumenless pacing lead platform. OBJECTIVE: This trial assessed safety and efficacy of the OmniaSecure defibrillation lead. METHODS: The worldwide LEADR pivotal clinical trial enrolled patients indicated for de novo implantation of a primary or secondary prevention implantable cardioverter-defibrillator or cardiac resynchronization therapy defibrillator, all of whom received the study lead. The primary efficacy end point was successful defibrillation at implantation per protocol. The primary safety end point was freedom from study lead-related major complications at 6 months. The primary efficacy and safety objectives were met if the lower bound of the 2-sided 95% credible interval was >88% and >90%, respectively. RESULTS: In total, 643 patients successfully received the study lead, and 505 patients have completed 12-month follow-up. The lead was placed in the desired right ventricular location in 99.5% of patients. Defibrillation testing at implantation was completed in 119 patients, with success in 97.5%. The Kaplan-Meier estimated freedom from study lead-related major complications was 97.1% at 6 and 12 months. The trial exceeded the primary efficacy and safety objective thresholds. There were zero study lead fractures and electrical performance was stable throughout the mean follow-up of 12.7 ± 4.8 months (mean ± SD). CONCLUSION: The OmniaSecure lead exceeded prespecified primary end point performance goals for safety and efficacy, demonstrating high defibrillation success and a low occurrence of lead-related major complications with zero lead fractures.


Assuntos
Desfibriladores Implantáveis , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Resultado do Tratamento , Idoso , Reprodutibilidade dos Testes , Seguimentos , Morte Súbita Cardíaca/prevenção & controle , Morte Súbita Cardíaca/etiologia , Desenho de Equipamento
19.
Acta Crystallogr Sect E Struct Rep Online ; 69(Pt 2): o313, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23424578

RESUMO

In the title compound, C(23)H(34)O(4), the C/D and D/E rings are trans fused and the A/B ring possesses an anti fusion. The two cyclo-hexane rings adopt a chair conformation while the cyclo-hexene ring exhibits a half-chair conformation. The cyclo-pentane ring displays an envelope conformation with the C atom bearing the methyl group as the flap. In the crystal, the mol-ecules are linked by O-H⋯O hydrogen bonds, forming chains along the b axis.

20.
J Biomol Struct Dyn ; 40(5): 2327-2338, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33094680

RESUMO

Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an ongoing global health emergency. Repurposing of approved pharmaceutical drugs for COVID-19 treatment represents an attractive approach to quickly identify promising drug candidates. SARS-CoV-2 main protease (Mpro) is responsible for the maturation of viral functional proteins making it a key antiviral target. Based on the recently revealed crystal structures of SARS-CoV-2 Mpro, we herein describe a multi-stage virtual screening protocol including pharmacophore screening, molecular docking and protein-ligand interaction fingerprints (PLIF) post-docking filtration for efficient enrichment of potent SARS-CoV-2 Mpro inhibitors. Potential hits, along with a cocrystallized control were further studied via molecular dynamics. A 150-ns production trajectory was followed by RMSD, free energy calculation, and H-bond analysis for each compound. The applied virtual screening protocol led to identification of five FDA-approved drugs with promising binding modes to key subsites of the substrate-binding pocket of SARS-CoV-2 Mpro. The identified compounds belong to different pharmaceutical classes, including several protease inhibitors, antineoplastic agents and a natural flavonoid. The drug candidates discovered in this study present a potential extension of the recently reported SARS-CoV-2 Mpro inhibitors that have been identified using other virtual screening protocols and may be repurposed for COVID-19 treatment.


Assuntos
Tratamento Farmacológico da COVID-19 , Preparações Farmacêuticas , Antivirais/química , Antivirais/farmacologia , Proteases 3C de Coronavírus , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA