Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Fluoresc ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38625571

RESUMO

For the first time, clemastine was estimated in this work utilizing two validated resonance Rayleigh scattering (RRS) and fluorimetric methods. The methods relied on forming an association complex in an acidic medium between eosin Y reagent and clemastine. In the spectrofluorimetric approach, the investigated drug was quantified by quenching the fluorescence-emission intensity of eosin Y at 543.5 nm. The RRS method relied on enhancing the RRS spectrum at 331.8 nm, which is produced when eosin Y interacts with clemastine. Suitable conditions were established for the reaction to achieve maximum sensitivity. The linear values obtained from the spectrofluorimetric approach and the RRS method fall into the ranges of 0.2-1.5 µg mL- 1 and 0.25-2.0 µg mL- 1, respectively. It was established that the detection limits for these methods were 0.045 µg mL- 1 and 0.059 µg mL- 1, respectively. The developed methodologies yielded acceptable recoveries when used to estimate the quantity of clemastine in its pharmaceutical tablet dosage form. Regarding the use of greener solvents that were chosen, the suggested and reported methods were compared with the help of the Green Solvents Selecting (GSST) tool for assessing hazardous solvents to achieve sustainability. Furthermore, analytical Eco scale and comprehensive assessments of whiteness, blueness, and greenness were carried out utilizing Modified NEMI, ComplexGAPI, and AGREE evaluation tools. Additionally, recently developed tools such as BAGI and RGB 12 were applied to assess the blueness and the whiteness of the suggested methods.

2.
Luminescence ; 39(6): e4813, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38922756

RESUMO

Pemigatinib (PGT) is a recently FDA-approved small molecule kinase inhibitor used for the treatment of relapsed or refractory myeloid/lymphoid neoplasms in adults. This study introduces the development of a first microwell spectrofluorimetric method (MW-SFM) for quantifying PGT in FDA-approved tablets and plasma samples. The method utilized the enhancement of PGT's weak native fluorescence by blocking photoinduced electron transfer (PET) and micellization with sodium lauryl sulfate (SLS). The MW-SFM was performed in 96-microwell plates, and fluorescence signals were measured using a fluorescence microplate reader with excitation at 290 nm and emission at 350 nm. The method exhibited a linear range of 2-250 ng mL-1, and a limit of quantitation was 6.5 ng mL-1. The accuracy and precision of the method were confirmed with recovery rates ranging from 96.5% to 102.8% and relative standard deviations of 1.52% to 3.51%. The MW-SFM successfully analyzed Pemazyre® tablets, assessed content uniformity, and analyzed PGT-spiked human plasma samples. The greenness of the MW-SFM was verified using three different metric tools. In conclusion, the proposed MW-SFM is a valuable tool in supporting quality assessment of dosage forms, conducting pharmacokinetic studies, and monitoring therapeutic outcomes.


Assuntos
Espectrometria de Fluorescência , Comprimidos , Humanos , Fluorescência , Transporte de Elétrons , Micelas , Pirimidinas/sangue , Pirimidinas/química , Dodecilsulfato de Sódio/química , Estrutura Molecular , Processos Fotoquímicos
3.
Luminescence ; 39(7): e4818, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39004769

RESUMO

Fexofenadine (FEX) is a non-sedating antihistamine commonly used for the treatment of allergic conditions such as seasonal rhinitis and chronic idiopathic urticaria. This study describes the tuning "ON" the intrinsic fluorescence of FEX by switching "OFF" its intramolecular photoinduced electron transfer (PET) through the protonation of the piperidinyl nitrogen atom using sulfuric acid. The resulting fluorescence was utilized as a basis for the development of a highly sensitive microwell spectrofluorimetric assay (MW-SFA) for the one-step determination of FEX in pharmaceutical tablets and plasma. The linear range of the assay was 10-500 ng ml-1, and its limit of quantitation was 25.9 ng ml-1. The proposed MW-SFA was successfully applied to analyze FEX in pharmaceutical tablets and plasma samples, demonstrating good accuracy and precision. The greenness of the assay was confirmed using three metric assessment tools. In conclusion, the MW-SFA is a straightforward, single-step analysis that requires no experimental adjustments. It offers high sensitivity, efficient sample processing, and environmental sustainability. This assay is highly recommended for pharmaceutical quality control and clinical lab use, particularly for measuring FEX levels.


Assuntos
Espectrometria de Fluorescência , Comprimidos , Terfenadina , Terfenadina/análogos & derivados , Terfenadina/sangue , Terfenadina/análise , Terfenadina/química , Transporte de Elétrons , Humanos , Fluorescência , Processos Fotoquímicos , Ensaios de Triagem em Larga Escala , Estrutura Molecular
4.
Luminescence ; 39(5): e4747, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38716575

RESUMO

Atezolizumab (ATZ) is a human monoclonal antibody, which has been granted multiple approvals from the US Food and Drug Administration (FDA) for the immunotherapy of different types of cancer. This study describes the prototype of a time-resolved fluoroimmunoassay (TRFIA) for the quantitation of ATZ in plasma. The assay involved the non-competitive binding of ATZ to its specific antigen [programmed death-ligand 1 (PD-L1) protein]. The immune complex formed on the inner surface of the assay plate wells was quantified by anti-human secondary antibody labeled with a chelate of europium-ethylenediaminetetraacetic acid. The enhanced fluorescence signal was generated by an enhanced fluorescence solution composed of thenoyltrifluoroacetone, trioctylphosphine oxide, and Triton X-100. The conditions of the TRFIA were refined, and its optimum procedures were established. The assay was validated in accordance with the immunoassay validation guidelines, and all the validation parameters were acceptable. The working range of the assay was 20-1000 pg mL-1, and its limit of quantitation was 20 pg mL-1. The assay was applied to the quantitation of ATZ in plasma samples with satisfactory accuracy and precision. The proposed TRFIA has significant benefits over the existing methodologies for the quantitation of ATZ in clinical settings.


Assuntos
Anticorpos Monoclonais Humanizados , Fluorimunoensaio , Fluorimunoensaio/métodos , Humanos , Anticorpos Monoclonais Humanizados/sangue , Anticorpos Monoclonais Humanizados/química , Anticorpos Monoclonais Humanizados/imunologia , Fluorescência , Fatores de Tempo
5.
Luminescence ; 39(5): e4777, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38785072

RESUMO

This study introduces a practical and cost-effective method for tracking diltiazem (DLZ) analytically. It utilizes a fluorimetric approach that relies on the modulation of fluorescence intensity of a dye called erythrosine B. Through a one-pot experiment performed in an acidic environment, a complex is rapidly formed between DLZ and erythrosine B. By observing the decrease in erythrosine B emission, a linear calibration plot is established, enabling the detection and quantification of DLZ concentrations ranging from 40 to 850 ng/ml. The estimated limits of detection and quantitation were 10.5 and 32.1 ng/ml, respectively. The variables affecting the DLZ-dye complex system were carefully adjusted. The validity of the approach was confirmed through a thorough evaluation based on the criteria set by ICH guidelines. The accuracy and precision of the methodology were evaluated, and the standard deviation and relative standard deviation were below 2. The strategy was successfully employed to analyze DLZ in tablets and capsules, and no significant variation between the proposed and reported methods as the values of the estimated t-test and F-test at five determinations were below 2.306 and 6.338, respectively. Notably, the method adheres to the principle of green chemistry by utilizing distilled water as the dispersing medium.


Assuntos
Diltiazem , Eritrosina , Diltiazem/análise , Diltiazem/química , Eritrosina/química , Eritrosina/análise , Espectrometria de Fluorescência , Comprimidos/análise , Concentração de Íons de Hidrogênio , Limite de Detecção , Cápsulas/química , Corantes Fluorescentes/química , Formas de Dosagem
6.
Luminescence ; 39(5): e4766, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38785095

RESUMO

In this work, two validated approaches were used for estimating hydroxyzine HCl for the first time using resonance Rayleigh scattering (RRS) and spectrofluorimetric techniques. The suggested approaches relied on forming an association complex between hydroxyzine HCl and 2,4,5,7-tetraiodofluorescein (erythrosin B) reagent in an acidic media. The quenching in the fluorescence intensity of 2,4,5,7-tetraiodofluorescein by hydroxyzine at 551.5 nm (excitation = 527.5 nm) was used for determining the studied drug by the spectrofluorimetric technique. The RRS approach is based on amplifying the RRS spectrum at 348 nm upon the interaction of hydroxyzine HCl with 2,4,5,7-tetraiodofluorescein. The spectrofluorimetric methodology and the RRS methodology produced linear results within ranges of 0.15-1.5 µg ml-1 and 0.1-1.2 µg ml-1, respectively. LOD values for these methods were determined to be 0.047 µg ml-1 and 0.033 µg ml-1, respectively. The content of hydroxyzine HCl in its pharmaceutical tablet was estimated using the developed procedures with acceptable recoveries. Additionally, the application of four greenness and whiteness algorithms shows that they are superior to the previously reported method in terms of sustainability, economics, analytical performance, and practicality.


Assuntos
Algoritmos , Hidroxizina , Espectrometria de Fluorescência , Hidroxizina/análise , Hidroxizina/química , Antagonistas dos Receptores Histamínicos/análise , Antagonistas dos Receptores Histamínicos/química , Espalhamento de Radiação , Eritrosina/química , Eritrosina/análise
7.
Molecules ; 28(13)2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37446883

RESUMO

In this study, a new green microwell spectrofluorimetric assay (MW-SFA) with high throughput was developed and validated, for the first time, for the determination of three selective serotonin reuptake inhibitors (SSRIs) in pharmaceutical dosage forms and plasma. These SSRIs were fluoxetine (FLX), fluvoxamine (FXM), and paroxetine (PXT), which are commonly prescribed drugs for depression treatment. The MW-SFA is based on the condensation reaction of SSRIs with 4-chloro-7-nitrobenzo-2-oxa-1,3-diazole (NBD-Cl) in alkaline media to form highly fluorescent derivatives. The MW-SFA procedures were conducted in 96-microwell white opaque assay plates with a flat bottom and the fluorescence signals were measured using a microplate reader at their maximum excitation and emission wavelengths. The calibration curves were generated with good correlation coefficients (0.9992-0.9995) between the relative fluorescence intensity (RFI) and the SSRI concentrations in the range of 35-800 ng/mL. The limits of detection were in the range of 11-25 ng/mL, and the precision and accuracy were satisfactory. The proposed MW-SFA was successfully applied to the analysis of the SSRIs in their pharmaceutical dosage forms. The statistical analysis for the comparison between the MW-SFA assay results and those of pharmacopeial assays showed no significant differences between the assays in terms of their accuracy and precision. The application of the proposed MW-SFA was extended to successfully analyze SSRIs in plasma samples. The greenness of the assay was confirmed using three different metric tools. The assay was characterized with high throughput properties, enabling the sensitive simultaneous analysis of many samples in a short time. This assay is valuable for rapid routine applications in pharmaceutical quality control units and clinical laboratories for the determination of SSRIs.


Assuntos
Fluvoxamina , Inibidores Seletivos de Recaptação de Serotonina , Espectrometria de Fluorescência/métodos , Plasma , Preparações Farmacêuticas
8.
Molecules ; 28(18)2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37764300

RESUMO

Olaparib (OLA) is a PARP inhibitor drug which has been recently approved by the Food and Drug Administration (FDA) for the treatment of ovarian and breast cancer. A convenient analytical tool for the quantitation of OLA in its dosage form and plasma samples was urgently needed. This study describes, for the first time, the development of two different label-free and sensitive fluorescence-based platforms for the pharmaceutical and bioanalysis of OLA. These platforms were microwell-assisted with a fluorescence microplate reader (MW-FLR) and high-performance liquid chromatography with fluorescence detection (HPLC-FD). Both MW-FLR and HPLC-FD employed the native fluorescence of OLA as an analytical signal. The MW-FLR involved measuring the fluorescence signals in 96-well white-opaque plates. The HPLC-FD involved chromatographic separation of OLA and duvelisib (DUV), as an internal standard on a Nucleosil-CN HPLC column (250 mm length × 4.6 mm i.d., 5 µm particle diameter) with a mobile phase composed of acetonitrile: water (25:75, v/v) pumped at a flow rate of 1.7 mL/min. Elution of OLA and DUV was detected using a fluorescence detector. The optimal conditions of both MW-FLR and HPLC-FD were established, and they were validated according to the guidelines of the International Council for Harmonization for the validation of analytical procedures. The linear ranges of MW-FLR and HPLC-FD were 25-1000 and 5-200 ng/mL, respectively, with limits of detection of 15 and 1.7 ng/mL, respectively. The accuracy and precision of both platforms were confirmed as the recovery values were ≥98.2% and the relative standard deviations (RSD) were ≤2.89%. Both methodologies were satisfactorily applied to the quantitation of OLA in its commercial dosage form (Lynparza® tablets) and plasma samples with high accuracy and precision. The greenness of both MW-FLR and HPLC-FD was assessed using two different multiple parameter-based metric tools, and the results proved their greenness and adherence to the requirements of green analytical approaches. Both platforms have simple procedures and acceptable levels of analytical throughput. In conclusion, the proposed MW-FLR and HPLC-FD are valuable tools for routine use in quality control and clinical laboratories for the quantitation of OLA for the purposes of pharmaceutical quality control, pharmacokinetic studies, and bioequivalence testing.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Cromatografia Líquida de Alta Pressão/métodos , Ftalazinas , Comprimidos/química
9.
Molecules ; 28(10)2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37241790

RESUMO

This study discusses the development and validation of a universal microwell spectrophotometric assay for TKIs, regardless of the diversity in their chemical structures. The assay depends on directly measuring the native ultraviolet light (UV) absorption of TKIs. The assay was carried out using UV-transparent 96-microwell plates and the absorbance signals were measured by a microplate reader at 230 nm, at which all TKIs had light absorption. Beer's law correlating the absorbances of TKIs with their corresponding concentrations was obeyed in the range of 2-160 µg mL-1 with excellent correlation coefficients (0.9991-0.9997). The limits of detection and limits quantitation were in the ranges of 0.56-5.21 and 1.69-15.78 µg mL-1, respectively. The proposed assay showed high precision as the values of the relative standard deviations for the intra- and inter-assay precisions did not exceed 2.03 and 2.14%, respectively. The accuracy of the assay was proven as the recovery values were in the range of 97.8-102.9% (±0.8-2.4%). The proposed assay was successfully applied to the quantitation of all TKIs in their pharmaceutical formulations (tablets) with reliable results in terms of high accuracy and precision. The assay greenness was evaluated, and the results proved that the assay fulfils the requirements of green analytical approach. The proposed assay is the first assay that can analyse all TKIs on a single assay system without chemical derivatization or modifications in the detection wavelength. In addition, the simple and simultaneous handling of a large number of samples as a batch using micro-volumes of samples gave the assay the advantage of high throughput analysis, which is a serious demand in the pharmaceutical industry.


Assuntos
Ensaios de Triagem em Larga Escala , Composição de Medicamentos , Espectrofotometria/métodos , Comprimidos/química
10.
Molecules ; 28(10)2023 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-37241961

RESUMO

This study describes the development and validation of a new green and high-throughput microwell spectrophotometric assay (MW-SPA) for the determination of three selective serotonin reuptake inhibitors (SSRIs) in their pharmaceutical dosage forms. These SSRIs are fluoxetine, fluvoxamine, and paroxetine, the most prescribed drugs for the treatment of depression. The proposed assay was based on the formation of orange-colored N-substituted naphthoquinone derivatives upon the reaction of SSRIs with 1,2-naphthoquinone-4-sulphonate (NQS) in alkaline media. The assay was conducted in 96-microwell assay plates, and the absorbances of the reaction products were measured by a microplate reader at their maximum absorbance wavelengths. The optimum conditions of the reaction were refined and established. Under these conditions, calibration curves were generated, and linear regression equations were computed. The linear relations between the absorbances and drug concentrations were linear with good correlation coefficients (0.9992-0.9997) in the range of 2-80 µg/mL. The assay limits of detection were in the range of 1.5-4.2 µg/mL. The precision was satisfactory as the values of relative standard deviation did not exceed 1.70%. The accuracy of the assay was ≥98.2%. The proposed MW-SPA was successfully applied to the analysis of the SSRIs in their pharmaceutical dosage forms with acceptable accuracy and precision; the label claims were 99.2-100.5% (±0.96-1.35%). The results of the proposed MW-SPA were compared with those of the official/pre-validated assays by statistical analysis with respect to the accuracy (by t-test) and precision (by F-test). No significant differences were found between the calculated and theoretical values of the t- and F-tests at the 95% confidence level, proving similar accuracy and precision in the determination of SSRIs by both assays. The greenness of the proposed assay was confirmed by two metric tools. In addition, the assay is characterized with a high-throughput property which enables the simultaneous analysis of many samples in a short time. Therefore, the assay is a valuable tool for rapid routine application in pharmaceutical quality control units for the determination of the investigated SSRIs.


Assuntos
Fluoxetina , Inibidores Seletivos de Recaptação de Serotonina , Espectrofotometria/métodos , Fluvoxamina , Preparações Farmacêuticas
11.
Molecules ; 28(20)2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37894495

RESUMO

This study describes the development of two highly sensitive immunosensor platforms for the trace determination of copper ions, Cu(II), in drinking water. These platforms were a microwell-based enzyme-linked immunosorbent assay (ELISA) and a kinetic exclusion assay (KinExA) with a KinExATM 3200 immunosensor. Both ELISA and KinExA were developed utilizing the same antibody and coating reagent. The antibody was a mouse monoclonal antibody, designated as 8D66, that specifically recognized Cu(II)-ethylenediamine tetraacetic acid complex (Cu(II)-EDTA) but did not recognize Cu(II)-free EDTA. The 8D66 monoclonal antibody was generated by the fusion of spleen cells of an immunized BALB/c mouse with SP2/0-Ag14 myeloma cells. The immunogen was a protein conjugate of Cu(II)-EDTA with keyhole limpet hemocyanin protein. The coating reagent was Cu(II)-EDTA covalently linked to bovine serum albumin protein (Cu(II)-EDTA-BSA). Both assays involved the competitive binding reaction between Cu(II)-EDTA complexes, formed in the sample solution, and Cu(II)-EDTA-BSA conjugate which has been immobilized onto ELISA plates (in ELISA) or polymethylmethacrylate beads (in KinExA) for a limited quantity of binding sites of the 8D66 antibody. In ELISA, color signals were generated by a peroxidase-labeled secondary antibody and 3,3',5,5'-tetramethylbenzidine substrate. In KinExA, a fluorescein isothiocyanate-labeled secondary antibody was used to generate KinExAgram (trend-line fluorescence responses vs. time). The conditions of both ELISA and KinExA were investigated, and the optimum procedures were established. Both ELISA and KinExA were validated, and all validation parameters were acceptable. Many different metal ions that are commonly encountered in drinking water did not interfere with the Cu(II) analysis by both ELISA and KinExA. Both assays were applied to the determination of Cu(II) in drinking water with satisfactory accuracy and precision. Both assays were compared favorably with inductively coupled plasma atomic emission spectroscopy in terms of their abilities to accurately and precisely determine Cu(II) in drinking water samples. A comparative evaluation of ELISA and KinExA revealed that KinExA had a higher sensitivity and better precision than ELISA, whereas both assays had comparable accuracy. Both ELISA and KinExA were superior to the existing atomic spectrometric methods for Cu(II) in terms of sensitivity, convenience, and analysis throughputs. The proposed ELISA and KinExA are anticipated to effectively contribute to assessing Cu(II) concentrations and control the exposure of humans to its potential toxicities.


Assuntos
Técnicas Biossensoriais , Água Potável , Humanos , Animais , Camundongos , Cobre/análise , Anticorpos Monoclonais , Ácido Edético/química , Água Potável/análise , Técnicas Biossensoriais/métodos , Imunoensaio/métodos , Antígenos , Indicadores e Reagentes
12.
Molecules ; 28(9)2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37175262

RESUMO

Lorlatinib (LRL) is the first drug of the third generation of anaplastic lymphoma kinase (ALK) inhibitors used a first-line treatment of non-small cell lung cancer (NSCLC). This study describes, for the first time, the investigations for the formation of a charge transfer complex (CTC) between LRL, as electron donor, with chloranilic acid (CLA), as a π-electron acceptor. The CTC was characterized by ultraviolet (UV)-visible spectrophotometry and computational calculations. The UV-visible spectrophotometry ascertained the formation of the CTC in methanol via formation of a new broad absorption band with maximum absorption peak (λmax) at 530 nm. The molar absorptivity (ε) of the complex was 0.55 × 103 L mol-1 cm-1 and its band gap energy was 2.3465 eV. The stoichiometric ratio of LRL/CLA was found to be 1:2. The association constant of the complex was 0.40 × 103 L mol-1, and its standard free energy was -0.15 × 102 J mole-1. The computational calculation for the atomic charges of an energy minimized LRL molecule was conducted, the sites of interaction on the LRL molecule were assigned, and the mechanism of the reaction was postulated. The reaction was adopted as a basis for developing a novel 96-microwell spectrophotometric method (MW-SPA) for LRL. The assay limits of detection and quantitation were 2.1 and 6.5 µg/well, respectively. The assay was validated, and all validation parameters were acceptable. The assay was implemented successfully with great precision and accuracy to the determination of LRL in its bulk form and pharmaceutical formulation (tablets). This assay is simple, economic, and more importantly has a high-throughput property. Therefore, the assay can be valuable for routine in quality control laboratories for analysis of LRL's bulk form and pharmaceutical tablets.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Espectrofotometria/métodos , Inibidores de Proteínas Quinases
13.
Molecules ; 28(6)2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36985779

RESUMO

This study describes the development of a one-step microwell spectrofluorimetric assay (MW-SFA) with high sensitivity and throughput for the determination of four statins in their pharmaceutical and formulations (tablets). These statins were pitavastatin (PIT), fluvastatin (FLU), rosuvastatin (ROS) and atorvastatin (ATO). The MW-SFA involves the measurement of the native fluorescence of the statin aqueous solutions. The assay was conducted in white opaque 96-microwell plates, and the fluorescence intensities of the solutions were measured by using a fluorescence microplate reader. The optimum conditions of the assay were established; under which, linear relationships with good correlation coefficients (0.9991-0.9996) were found between the fluorescence intensity and the concentration of the statin drug in a range of 0.2-200 µg mL-1 with limits of detection in a range of 0.1-4.1 µg mL-1. The proposed MW-SFA showed high precision, as the values of the relative standard deviations did not exceed 2.5%. The accuracy of the assay was proven by recovery studies, as the recovery values were 99.5-101.4% (±1.4-2.1%). The assay was applied to the determination of the investigated statins in their tablets. The results were statistically compared with those obtained by a reference method and the results proved to have comparable accuracy and precision of both methods, as evidenced by the t- and F-tests, respectively. The green and eco-friendly feature of the proposed assay was assessed by four different metric tools, and all the results proved that the assay meets the requirements of green and eco-friendly analytical approaches. In addition, ever-increasing miniaturization as handling of large numbers of micro-volume samples simultaneously in the proposed assay gave it a high-throughput feature. Therefore, the assay is a valuable tool for the rapid routine application in the pharmaceutical quality control units for the determination of statins.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases , Composição de Medicamentos , Espectrometria de Fluorescência/métodos , Comprimidos
14.
Molecules ; 28(23)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38067605

RESUMO

Ruxolitinib (RUX) is a potent drug that has been approved by the Food and Drug Administration for the treatment of myelofibrosis, polycythemia vera, and graft-versus-host disease. This study describes the formation of colored charge-transfer complexes (CTCs) of RUX, an electron donor, with chloranilic acid (CLA) and 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ), the π-electron acceptors. The CTCs were characterized using UV-visible spectrophotometry. The formation of CTCs in methanol was confirmed via formation of new absorption bands with maximum absorption at 530 and 470 nm for CTCs with CLA and DDQ, respectively. The molar absorptivity and other physicochemical and electronic properties of CTCs were determined. The molar ratio was found to be 1:1 for both CTCs with CLA and CTCs with DDQ. The site of interaction on RUX molecules was assigned and the mechanisms of the reactions were postulated. The reactions were employed as basis for the development of a novel green and one-step microwell spectrophotometric method (MW-SPM) for high-throughput quantitation of RUX. Reactions of RUX with CLA and DDQ were carried out in 96-well transparent plates, and the absorbances of the colored CTCs were measured by an absorbance microplate reader. The MW-SPM was validated according to the ICH guidelines. The limits of quantitation were 7.5 and 12.6 µg/mL for the methods involving reactions with CLA and DDQ, respectively. The method was applied with great reliability to the quantitation of RUX content in Jakavi® tablets and Opzelura® cream. The greenness of the MW-SPM was assessed by three different metric tools, and the results proved that the method fulfills the requirements of green analytical approaches. In addition, the one-step reactions and simultaneous handling of a large number of samples with micro-volumes using the proposed method enables the high-throughput analysis. In conclusion, this study describes the first MW-SPM, a valuable analytical tool for the quality control of pharmaceutical formulations of RUX.


Assuntos
Benzoquinonas , Composição de Medicamentos , Reprodutibilidade dos Testes , Benzoquinonas/química , Espectrofotometria/métodos , Comprimidos
15.
Molecules ; 28(20)2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37894533

RESUMO

Ceritinib (CER) is a potent drug that has been recently approved by the Food and Drug Administration for the treatment of patients with non-small cell lung cancer harboring the anaplastic lymphoma kinase mutation gene. The existing methods for the quality control of CER are very limited and suffer from limited analytical throughput and do not meet the requirements of the green analytical principles. This study presented the first-ever development and validation of three innovative green and high-throughput microwell spectrophotometric methods (MW-SPMs) for the quality control of CER in its dosage form (Zykadia® capsules). These MW-SPMs were based on the formation of colored N-vinylamino-substituted haloquinone derivatives of CER upon its reactions with each of chloranil, bromanil, and 2,3-dichloro-1,4-naphthoquinone in the presence of acetaldehyde. The optimized procedures of the MW-SPMs were established, and their analytical performances were validated according to the ICH. The linear range of the MW-SPMs was 5-150 µg/mL, with limits of quantitation of 5.3-7.6 µg/mL. The accuracy and precision of the MW-SPMs were proved, as the average recovery values were 99.9-101.0%, and the relative standard deviations did not exceed 1.8%. The three methods were applied to the determination of CER content in Zykadia® capsules and drug content uniformity testing. The greenness of the MW-SPMs was proved using three different metric tools. In addition, these methods encompassed the advantage of high-throughput analysis. In conclusion, the three methods are valuable tools for convenient and reliable application in the pharmaceutical quality control units for CER-containing capsules.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/patologia , Preparações Farmacêuticas , Neoplasias Pulmonares/patologia , Pirimidinas
16.
Medicina (Kaunas) ; 59(4)2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37109714

RESUMO

Background and Objectives: Lorlatinib (LOR) belongs to the third-generation anaplastic lymphoma kinase (ALK) tyrosine kinase inhibitors. People who are diagnosed with ALK-positive metastatic and advanced non-small cell lung cancer (NSCLC) are eligible to get it as a first-line treatment option after it was given the approval by "the Food and Drug Administration (FDA)". However, no study has described constructing high-throughput analytical methodology for LOR quantitation in dosage form. For the first time, this work details the construction of a high-throughput, innovative microwell spectrophotometric assay (MW-SPA) for single-step assessment of LOR in its tablet form, for use in pharmaceutical quality control. Materials and Methods: Assay depended on charge transfer complex (CTC) formation between LOR, as electron donor, with 2,3-dichloro-3,5-dicyano-1,4-benzoquinone (DDQ), as π-electron acceptor. Reaction conditions were adjusted, the CTC was characterized by ultraviolet (UV)-visible spectrophotometry and computational molecular modeling, and its electronic constants were determined. Site of interaction on LOR molecule was allocated and reaction mechanism was suggested. Under refined optimum reaction conditions, the procedures of MW-SPA were performed in 96-well assay plates, and the responses were recorded by an absorbance plate reader. Validation of the current methodology was performed in accordance with guidelines of "the International Council on Harmonization (ICH)", and all validation parameters were acceptable. Results: Limits of detection and quantitation of MW-SPA were 1.8 and 5.5 µg/well, respectively. The assay was applied with great success for determining LOR in its tablets. Conclusions: This The assay is straightforward, economic and has high-throughput characteristics. Consequently, the assay is recommended as a valuable analytical approach in quality control laboratories for LOR's tablets' analysis.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Quinase do Linfoma Anaplásico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Lactamas Macrocíclicas/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Inibidores de Proteínas Quinases/uso terapêutico , Espectrofotometria/métodos
17.
Medicina (Kaunas) ; 59(4)2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37109733

RESUMO

Background and Objective: Tyrosine kinase inhibitors (TKIs) are used for the treatment of different types of cancers. The current study describes, for the first time, the ultraviolet-visible spectrophotometric investigation of charge transfer complexes (CTCs) of seven TKIs, as electron donors, and iodine, as σ-electron. Materials and Methods: The formation of CTCs was promoted in dichloromethane, among the other solvents used in the investigation. The molar absorptivity values, association constants, and free energy changes of the CTCs were determined. Stoichiometric ratio of TKI: iodine as well as TKIs site(s) of interaction were addressed. Reaction was the basis for constructing a novel simple and accurate 96-microwell spectrophotometric assay (MW-SPA) with high-throughput property for the quantitative determination of TKIs in their pharmaceutical formulations. Results: Beer's law, which relates CTC absorbances to TKI concentrations, was followed within the optimal range of 2 to 100 µg/well (r ranged from 0.9991 to 0.9998). Detection and quantification limits ranged from 0.91 to 3.60 and 2.76 to 10.92 g µmL-1, respectively. Relative standard deviations values for the intra- and inter-assay precisions of the proposed MW-SPA did not exceed 2.13 and 2.34%, respectively. Studies of recovery demonstrated MW-SPA accuracy, with results ranging from 98.9% to 102.4%. All TKIs, both in bulk form and in pharmaceutical formulations (tablets), were effectively determined using the suggested MW-SPA. Conclusions: The current MW-SPA involved a simple procedure and it was convenient as it could analyse all proposed TKIs utilizing a single assay system at once measuring wavelengths for all TKIs. In addition, the proposed MW-SPA has high throughput which enables the processing of a batch of huge samples' number in very short reasonable time period. In conclusion, TKIs can be routinely analysed in their dosage forms in quality control laboratories, and the assay can be highly valuable and helpful in this regard.


Assuntos
Iodo , Humanos , Composição de Medicamentos , Elétrons , Oxidantes , Comprimidos
18.
Medicina (Kaunas) ; 59(10)2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37893531

RESUMO

Background and Objectives: Ceritinib (CER) is a potent drug of the third-generation tyrosine kinase inhibitor class. CER has been approved for the treatment of patients with non-small-cell lung cancer (NSCLC) harboring the anaplastic lymphoma kinase (ALK) mutation gene. In the literature, there is no green and high-throughput analytical method for the quantitation of CER in its dosage form (Zykadia® capsules). This study describes, for the first time, the development and validation of two novel one-step and green microwell spectrophotometric methods (MW-SPMs) for the high-throughput quantitation of CER in Zykadia® capsules. Materials and Methods: These two methods were based on an in microwell formation of colored derivatives upon the reaction of CER with two different benzoquinone reagents via two different mechanisms. These reagents were ortho-benzoquinone (OBQ) and 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ), and their reactions proceeded via condensation and charge transfer reactions, respectively. The reactions were carried out in 96-well transparent plates, and the absorbances of the colored reaction products were measured with an absorbance microplate reader at 540 and 460 nm for reactions with OBQ and DDQ, respectively. The optimum conditions of reactions were established, their molar ratios were determined, and reaction mechanisms were postulated. Under the refined optimum reaction conditions, procedures of MW-SPMs were established and validated according to the guidelines of the International Council on Harmonization. Results: The limits of quantitation were 6.5 and 10.2 µg/well for methods involving reactions with OBQ and DDQ, respectively. Both methods were applied with great reliability to the determination of CER content in Zykadia® capsules and their drug uniformity. Greenness of the MW-SPMs was evaluated using three different metric tools, and the results proved that the two methods fulfil the requirements of green analytical approaches. In addition, the simultaneous handling of a large number of samples with microvolumes in the proposed methods gave them the advantage of a high-throughput analysis. Conclusions: The two methods are valuable tools for rapid routine application in pharmaceutical quality control units for the quantitation of CER.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Quinase do Linfoma Anaplásico , Reprodutibilidade dos Testes , Benzoquinonas/uso terapêutico , Indicadores e Reagentes
19.
Medicina (Kaunas) ; 59(3)2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36984441

RESUMO

Background and Objectives: This study presents the development and validation of the 96-microwell-based spectrofluorimetric (MW-SFL) and high performance liquid chromatography (HPLC) with fluorescence detection (HPLC-FD) methods for the quantitation of alectinib (ALC) in its bulk powder form and in urine samples. Materials and Methods: The MW-SFL was based on the enhancement of the native fluorescence of ALC by the formation of micelles with the surfactant cremophor RH 40 (Cr RH 40) in aqueous media. The MW-SFL was executed in a 96-microwell plate and the relative fluorescence intensity (RFI) was recorded by utilizing a fluorescence plate reader at 450 nm after excitation at 280 nm. The HPLC-FD involved the chromatographic separation of ALC and ponatinib (PTB), as an internal standard (IS), on a C18 column and a mobile phase composed of methanol:potassium dihydrogen phosphate pH 7 (80:20, v/v) at a flow rate of 2 mL min-1. The eluted ALC and PTB were detected by utilizing a fluorescence detector set at 365 nm for excitation and 450 nm for emission. Results: Validation of the MW-SFL and HPLC-FD analytical methods was carried out in accordance with the recommendations issued by the International Council for Harmonization (ICH) for the process of validating analytical procedures. Both methods were efficaciously applied for ALC quantitation in its bulk form as well as in spiked urine; the mean recovery values were ≥86.90 and 95.45% for the MW-SFL and HPLC-FD methods, respectively. Conclusions: Both methodologies are valuable for routine use in quality control (QC) laboratories for determination of ALC in pure powder form and in human urine samples.


Assuntos
Carbazóis , Piperidinas , Humanos , Cromatografia Líquida de Alta Pressão/métodos , Pós
20.
J Mol Struct ; 1263: 133104, 2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-35465174

RESUMO

Remdesivir (REM) is an adenosine triphosphate analog antiviral drug that has received authorization from European Commission and approval from the U.S. Food and Drug Administration for treatment of coronavirus disease 2019 (Covid-19). This study, describes, for the first time, the synthesis of a novel charge transfer complex (CTC) between REM, as electron donor, with chloranilic acid (CLA), as π electron acceptor. The CTC was characterized using different spectroscopic and thermogravimetric techniques. UV-visible spectroscopy ascertained the formation of the CTC in methanol via formation of a new broad absorption band with maximum absorption peak (λmax) at 530 nm. The molar absorptivity (ε) of the complex was 3.33 × 103 L mol-1 cm-1 and its band gap energy was 1.91 eV. The stoichiometric ratio of REM:CLA was found to be 1:1. The association constant of the complex was 1.11 × 109 L mol-1, and its standard free energy was 5.16 × 104 J mole-1. Computational calculation for atomic charges of energy minimized REM was conducted, the site of interaction on REM molecule was assigned and the mechanism of the reaction was postulated. The solid-state CTC was further characterized by FT-IR and 1H NMR spectroscopic techniques. Both FT-IR and 1H NMR confirmed the formation of the CTC and its structure. The reaction was adopted as a basis for developing a novel 96-microwell spectrophotometric method (MW-SPA) for REM. The assay limits of detection and quantitation were 3.57 and 10.83 µg/well, respectively. The assay was validated, and all validation parameters were acceptable. The assay was implemented successfully with great precision and accuracy to the determination of REM in its bulk form and pharmaceutical formulation (injection). This assay is simple, economic, and more importantly, has high throughput property. Therefore, the assay can be valuable for routine in quality control laboratories for analysis of REM's bulk form and pharmaceutical injection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA