Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Biochemistry ; 57(5): 620-630, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29239168

RESUMO

The light, oxygen, voltage (LOV) domain proteins are blue light photoreceptors that utilize a noncovalently bound flavin mononucleotide (FMN) cofactor as the chromophore. The modular nature of these proteins has led to their wide adoption in the emerging fields of optogenetics and optobiology, where the LOV domain has been fused to a variety of output domains leading to novel light-controlled applications. In this work, we extend our studies of the subpicosecond to several hundred microsecond transient infrared spectroscopy of the isolated LOV domain AsLOV2 to three full-length photoreceptors in which the LOV domain is fused to an output domain: the LOV-STAS protein, YtvA, the LOV-HTH transcription factor, EL222, and the LOV-histidine kinase, LovK. Despite differences in tertiary structure, the overall pathway leading to cysteine adduct formation from the FMN triplet state is highly conserved, although there are slight variations in rate. However, significant differences are observed in the vibrational spectra and kinetics after adduct formation, which are directly linked to the specific output function of the LOV domain. While the rate of adduct formation varies by only 3.6-fold among the proteins, the subsequent large-scale structural changes in the full-length LOV photoreceptors occur over the micro- to submillisecond time scales and vary by orders of magnitude depending on the different output function of each LOV domain.


Assuntos
Fotorreceptores Microbianos/efeitos da radiação , Fotorreceptores de Plantas/efeitos da radiação , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Sítios de Ligação , Cristalografia por Raios X , Cisteína/química , Mononucleotídeo de Flavina/química , Ligação de Hidrogênio , Modelos Moleculares , Fotodegradação , Fotoquímica , Fotorreceptores Microbianos/química , Fotorreceptores de Plantas/química , Conformação Proteica , Domínios Proteicos , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/efeitos da radiação , Técnica de Subtração
2.
J Med Chem ; 65(24): 16510-16525, 2022 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-36459397

RESUMO

The relationship between drug-target residence time and the post-antibiotic effect (PAE) provides insights into target vulnerability. To probe the vulnerability of bacterial acetyl-CoA carboxylase (ACC), a series of heterobivalent inhibitors were synthesized based on pyridopyrimidine 1 and moiramide B (3) which bind to the biotin carboxylase and carboxyltransferase ACC active sites, respectively. The heterobivalent compound 17, which has a linker of 50 Å, was a tight binding inhibitor of Escherichia coli ACC (Kiapp 0.2 nM) and could be displaced from ACC by a combination of both 1 and 3 but not just by 1. In agreement with the prolonged occupancy of ACC resulting from forced proximity binding, the heterobivalent inhibitors produced a PAE in E. coli of 1-4 h in contrast to 1 and 3 in combination or alone, indicating that ACC is a vulnerable target and highlighting the utility of kinetic, time-dependent effects in the drug mechanism of action.


Assuntos
Acetil-CoA Carboxilase , Escherichia coli , Escherichia coli/metabolismo , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/metabolismo , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Domínio Catalítico
3.
ACS Chem Biol ; 15(10): 2752-2765, 2020 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-32880430

RESUMO

Light-activated protein domains provide a convenient, modular, and genetically encodable sensor for optogenetics and optobiology. Although these domains have now been deployed in numerous systems, the precise mechanism of photoactivation and the accompanying structural dynamics that modulate output domain activity remain to be fully elucidated. In the C-terminal light-oxygen-voltage (LOV) domain of plant phototropins (LOV2), blue light activation leads to formation of an adduct between a conserved Cys residue and the embedded FMN chromophore, rotation of a conserved Gln (Q513), and unfolding of a helix (Jα-helix) which is coupled to the output domain. In the present work, we focus on the allosteric pathways leading to Jα helix unfolding in Avena sativa LOV2 (AsLOV2) using an interdisciplinary approach involving molecular dynamics simulations extending to 7 µs, time-resolved infrared spectroscopy, solution NMR spectroscopy, and in-cell optogenetic experiments. In the dark state, the side chain of N414 is hydrogen bonded to the backbone N-H of Q513. The simulations predict a lever-like motion of Q513 after Cys adduct formation resulting in a loss of the interaction between the side chain of N414 and the backbone C═O of Q513, and formation of a transient hydrogen bond between the Q513 and N414 side chains. The central role of N414 in signal transduction was evaluated by site-directed mutagenesis supporting a direct link between Jα helix unfolding dynamics and the cellular function of the Zdk2-AsLOV2 optogenetic construct. Through this multifaceted approach, we show that Q513 and N414 are critical mediators of protein structural dynamics, linking the ultrafast (sub-ps) excitation of the FMN chromophore to the microsecond conformational changes that result in photoreceptor activation and biological function.


Assuntos
Avena/química , Glutamina/química , Fototropinas/metabolismo , Desdobramento de Proteína/efeitos da radiação , Mononucleotídeo de Flavina/metabolismo , Ligação de Hidrogênio , Luz , Proteínas de Membrana/metabolismo , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Mutação , Optogenética , Fototropinas/genética , Fototropinas/efeitos da radiação , Ligação Proteica , Conformação Proteica em alfa-Hélice , Domínios Proteicos , Multimerização Proteica/efeitos da radiação
4.
ACS Infect Dis ; 2(5): 329-340, 2016 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-27294200

RESUMO

4-Oxo-4-phenyl-but-2-enoates inhibit MenB, the 1,4-dihydroxyl-2-naphthoyl-CoA synthase in the bacterial menaquinone (MK) biosynthesis pathway, through the formation of an adduct with coenzyme A (CoA). Here, we show that the corresponding methyl butenoates have MIC values as low as 0.35-0.75 µg/mL against drug sensitive and resistant strains of Staphylococcus aureus. Mode of action studies on the most potent compound, methyl 4-(4-chlorophenyl)-4-oxobut-2-enoate (1), reveal that 1 is converted into the corresponding CoA adduct in S. aureus cells, and that this adduct binds to the S. aureus MenB (saMenB) with a Kd value of 2 µM. The antibacterial spectrum of 1 is limited to bacteria that utilize MK for respiration, and the activity of 1 can be complemented with exogenous MK or menadione. Finally, treatment of methicillin-resistant S. aureus (MRSA) with 1 results in the small colony variant phenotype and thus 1 phenocopies knockout of the menB gene. Taken together the data indicate that the antibacterial activity of 1 results from a specific effect on MK biosynthesis. We also evaluated the in vivo efficacy of 1 using two mouse models of MRSA infection. Notably, compound 1 increased survival in a systemic infection model and resulted in a dose-dependent decrease in bacterial load in a thigh infection model, validating MenB as a target for the development of new anti-MRSA candidates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA