Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Chemistry ; 29(33): e202300763, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-36988058

RESUMO

Fe catalyzed carbene insertion reactions present an efficient route for direct C-H functionalization. The use of Fe(III) in place of the widely used Fe(II) presents several benefits. However, the mechanistic understanding of Fe(III) severely lags behind Fe(II) complexes. One of the major unsolved issues relates to the formation of bridged versus terminal metallocarbenes. Even though the oxidized bridged carbenoid complexes have been isolated and found to be thermodynamically more stable, they are generally considered a dead end for the catalytic cycle. In the current report, the formation and the subsequent reactions of the bridged carbenoid complexes for an Fe(TPP)Cl catalyzed C(sp2 )-H insertion are investigated. Using DFT calculations, it is observed that both mono and bis oxidized bridged carbenoid complexes can participate in the catalytic cycle. Importantly, for the first time, a mechanistic pathway showing that these bridged species are not a dead end in Fe catalysis is presented. Their existence in other reactions might be more prevalent than what is currently believed. The current study will have important implications in utilizing Fe(III) complexes for other insertion reactions, especially for heme containing enzymes which necessarily need to be carried out under anaerobic/reducing conditions.


Assuntos
Compostos Férricos , Heme , Catálise , Compostos Ferrosos
2.
Inorg Chem ; 59(10): 7067-7081, 2020 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-32378897

RESUMO

The three Co(II) complexes [Co(bbp)2][Co(NCS)4]·4DMF (1), [Co(bbp)(NCS)2(DMF)]·2DMF (2), and [Co(bbp)(NCS)2] (3) have been synthesized and characterized by single-crystal X-ray diffraction, magnetic, and various spectroscopic techniques. Complexes 1 and 3 are obtained by the reaction of Co(NCS)2 with 2,6-bis(1H-benzo[d]imidazol-2-yl)pyridine (bbp), and complex 1 undergoes a structural transformation to form complex 2. A single-crystal X-ray study revealed that complex 1 is comprised of two Co(II) centers, a cationic octahedral Co(II) unit and an anionic tetrahedral Co(II) unit, while the Co(II) ion is in a distorted-octahedral environment in 2. Moreover, in complex 3, the Co(II) ion is in a distorted-square-pyramidal geometry. The effect of coordination geometry on the magnetic properties was studied by both static and dynamic magnetic measurements. Direct current (dc) magnetic susceptibility measurements showed that all of the Co(II) ions are in high-spin state in these complexes. Alternating current (ac) magnetic susceptibility measurements indicated that complexes 2 and 3 display slow relaxation of magnetization in an external dc magnetic field, while complex 1 displayed no such property. EPR experiments and theoretical calculations were consistent with the above findings.

3.
Chem Commun (Camb) ; 59(88): 13107-13124, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37846652

RESUMO

Addressing molecular bistability as a function of external stimuli, especially in spin-crossover (SCO) and metal-to-metal electron transfer (MMET) systems, has seen a surge of interest in the field of molecule-based magnetic materials due to their enormous potential in various technological applications such as molecular spintronics, memory and electronic devices, switches, sensors, and many more. The fine-tuning of molecular components allow the design and synthesis of materials with tailored properties for these vast applications. In this Feature Article, we discuss a part of our research work into this broad topic, pertaining to the recent discoveries in the field of switchable molecular magnetic materials based on SCO and MMET systems, along with some historical background of the area and related accomplishments made in recent years.

4.
Dalton Trans ; 49(42): 14776-14780, 2020 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-33078798

RESUMO

A mononuclear manganese(iii) complex containing a flexible hexadentate chelating ligand has been prepared and characterized by performing, at various temperatures, single-crystal X-ray diffraction analyses and magnetic, spectroscopic, and electrochemical studies. The complex was shown to consist of an MnN4O2 octahedral coordination environment, and to exhibit reversible two-step thermally induced spin-state switching, a gradual one at 168 K and an abrupt one at 103 K. Structural analyses revealed the existence of three spin-states, namely high-spin, low-spin, and intermediate states, during the spin-state switching process. Electrochemistry studies showed the quasi-reversible reduction and oxidation of the manganese(iii) center with a comparatively easily accessible reduced state.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA