Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 26(20)2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34684748

RESUMO

The flame-retardant performance of materials has become an increasingly crucial factor for society across a broad range of applications in aircraft, automobiles, civil infrastructure, and consumer products [...].

2.
Molecules ; 25(10)2020 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-32408631

RESUMO

Wheat gluten biopolymers generally become excessively rigid when processed without plasticisers, while the use of plasticisers, on the other hand, can deteriorate their mechanical properties. As such, this study investigated the effect of carbon black (CB) as a filler into glycerol-plasticised gluten to prepare gluten/CB biocomposites in order to eliminate the aforementioned drawback. Thus, biocomposites were manufactured using compression moulding followed by the determination of their mechanical, morphological, and chemical properties. The filler content of 4 wt% was found to be optimal for achieving increased tensile strength by 24%, and tensile modulus by 268% along with the toughness retention based on energy at break when compared with those of glycerol-plasticised gluten. When reaching the filler content up to 6 wt%, the tensile properties were found to be worsened, which can be ascribed to excessive agglomeration of carbon black at the high content levels within gluten matrices. Based on infrared spectroscopy, the results demonstrate an increased amount of ß-sheets, suggesting the formation of more aggregated protein networks induced by increasing the filler contents. However, the addition of fillers did not improve fire and water resistance in such bionanocomposites owing to the high blend ratio of plasticiser to gluten.


Assuntos
Glutens/química , Glicerol/química , Plastificantes/química , Fuligem/química , Triticum/química
3.
Molecules ; 25(21)2020 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-33167598

RESUMO

Polyethylene (PE) is one the most used plastics worldwide for a wide range of applications due to its good mechanical and chemical resistance, low density, cost efficiency, ease of processability, non-reactivity, low toxicity, good electric insulation, and good functionality. However, its high flammability and rapid flame spread pose dangers for certain applications. Therefore, different flame-retardant (FR) additives are incorporated into PE to increase its flame retardancy. In this review article, research papers from the past 10 years on the flame retardancy of PE systems are comprehensively reviewed and classified based on the additive sources. The FR additives are classified in well-known FR families, including phosphorous, melamine, nitrogen, inorganic hydroxides, boron, and silicon. The mechanism of fire retardance in each family is pinpointed. In addition to the efficiency of each FR in increasing the flame retardancy, its impact on the mechanical properties of the PE system is also discussed. Most of the FRs can decrease the heat release rate (HRR) of the PE products and simultaneously maintains the mechanical properties in appropriate ratios. Based on the literature, inorganic hydroxide seems to be used more in PE systems compared to other families. Finally, the role of nanotechnology for more efficient FR-PE systems is discussed and recommendations are given on implementing strategies that could help incorporate flame retardancy in the circular economy model.


Assuntos
Retardadores de Chama , Nanocompostos/química , Polietileno/química , Boro/química , Temperatura Alta , Hidróxidos/química , Compostos Inorgânicos , Microscopia Eletrônica de Varredura , Nanotecnologia , Nitrogênio/química , Oxigênio/química , Fósforo/química , Polímeros/química , Silício/química , Triazinas/química
4.
Environ Manage ; 62(2): 403-413, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29594380

RESUMO

Four biomass wastes (rice husk, coffee husk, coarse wool, and landfill wood) were added with biochar and polypropylene (PP) to manufacture biocomposites. Individual biomasses were tested for their combustion behavior using cone calorimeter. Biocomposites were analyzed for their fire/thermal, mechanical, and morphological properties. Wood had the most desirable comprehensive effect on both the mechanical and fire properties of composites. In particular, wood and biochar composite exhibited the highest values of tensile/flexural properties with a relatively low peak heat release rate. In general, application of waste derived biochar and biomasses drastically reduced the susceptibility of neat PP towards fire.


Assuntos
Carvão Vegetal/química , Polipropilenos/química , Gerenciamento de Resíduos/métodos , Madeira/química , Biomassa , Resíduos
5.
Sci Rep ; 14(1): 5389, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443417

RESUMO

Polymer microcapsules containing cyanoacrylates have represented a promising option to develop self-healing biomaterials. This study aims to develop an electrospray method for the preparation of capsules using poly(methyl methacrylate) (PMMA) as the encapsulant and ethyl 2-cyanoacrylate (EC) as the encapsulate. It also aims to study the effect of the electrospray process parameters on the size and morphology of the capsules. The capsules were characterized using Fourier-transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), and field-emission scanning electron microscopy (FE-SEM). Moreover, the effects of electrospray process parameters on the size were investigated by Taguchi experimental design. FTIR and TGA approved the presence of both PMMA and EC without further reaction. FE-SEM micrograph demonstrated that an appropriate choice of solvents, utilizing an appropriate PMMA:EC ratio and sufficient PMMA concentration are critical factors to produce capsules dominantly with an intact and spherical morphology. Utilizing various flow rates (0.3-0.5 ml/h) and applied voltage (18-26 kV), capsules were obtained with a 600-1000 nm size range. At constantly applied voltages, the increase in flow rate increased the capsule size up to 40% (ANOVA, p ≤ 0.05), while at constant flow rates, the increase in applied voltage reduced the average capsule size by 3.4-26% (ANOVA, p ≤ 0.05). The results from the Taguchi design represented the significance of solution flow rate, applied voltage, and solution concentration. It was shown that the most effective parameter on the size of capsules is flow rate. This research demonstrated that electrospray can be utilized as a convenient method for the preparation of sub-micron PMMA capsules containing EC. Furthermore, the morphology of the capsules is dominated by solvents, PMMA concentration, and PMMA:EC ratio, while the average size of the capsules can be altered by adjusting the flow rate and applied voltage of the electrospray process.

6.
Sci Rep ; 14(1): 11400, 2024 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-38762571

RESUMO

The current study developed an innovative design for the production of smart multifunctional core-double shell superparamagnetic nanoparticles (NPs) with a focus on the development of a pH-responsive drug delivery system tailored for the controlled release of Phenytoin, accompanied by real-time monitoring capabilities. In this regard, the ultra-small superparamagnetic iron oxide@silica NPs (IO@Si MNPs) were synthesized and then coated with a layer of gelatin containing Phenytoin as an antiepileptic drug. The precise saturation magnetization value for the resultant NPs was established at 26 emu g-1. The polymeric shell showed a pH-sensitive behavior with the capacity to regulate the release of encapsulated drug under neutral pH conditions, simultaneously, releasing more amount of the drug in a simulated tumorous-epileptic acidic condition. The NPs showed an average size of 41.04 nm, which is in the desired size range facilitating entry through the blood-brain barrier. The values of drug loading and encapsulation efficiency were determined to be 2.01 and 10.05%, respectively. Moreover, kinetic studies revealed a Fickian diffusion process of Phenytoin release, and diffusional exponent values based on the Korsmeyer-Peppas equation were achieved at pH 7.4 and pH 6.3. The synthesized NPs did not show any cytotoxicity. Consequently, this new design offers a faster release of PHT at the site of a tumor in response to a change in pH, which is essential to prevent epileptic attacks.


Assuntos
Anticonvulsivantes , Sistemas de Liberação de Medicamentos , Gelatina , Fenitoína , Dióxido de Silício , Gelatina/química , Anticonvulsivantes/química , Anticonvulsivantes/administração & dosagem , Dióxido de Silício/química , Concentração de Íons de Hidrogênio , Fenitoína/química , Fenitoína/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Humanos , Compostos Férricos/química , Liberação Controlada de Fármacos , Portadores de Fármacos/química , Nanopartículas Magnéticas de Óxido de Ferro/química , Nanopartículas de Magnetita/química , Nanopartículas/química , Tamanho da Partícula
7.
Int J Biol Macromol ; 276(Pt 1): 133734, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39002903

RESUMO

In this study, Kraft lignin was modified by ammonium dihydrogen phosphate (ADP) and urea for achieving phosphorylation and carbamylation, aiming to protect wood against biological and fire attack. Scots pine (Pinus sylvestris L.) sapwood was impregnated with a water solution containing Kraft lignin, ADP, and urea, followed by heat treatment at 150 °C, resulting in changes in the properties of the Kraft lignin as well as the wood matrix. Infrared spectroscopy, 13C cross-polarisation magic-angle-spinning (MAS) nuclear magnetic resonance (NMR), and direct excitation single-pulse 31P MAS NMR analyses suggested the grafting reaction of phosphate and carbamylate groups onto the hydroxyl groups of Kraft lignin. Scanning electron microscopy with energy dispersive X-ray spectroscopy indicated that the condensed Kraft lignin filled the lumen as well as partially penetrating the wood cell wall. The modified Kraft lignin imparted fire-retardancy and increased char residue to the wood at elevated temperature, as confirmed by limiting oxygen index, microscale combustion calorimetry, and thermogravimetric analysis. The modified wood exhibited superior resistance against mold and decay fungi attack under laboratory conditions. The modified wood had a similar modulus of elasticity to the unmodified wood, while experiencing a reduction in the modulus of rupture.

8.
Polymers (Basel) ; 15(17)2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37688277

RESUMO

This article reports the characterisation of pyrolysis of automotive shredder residue using in situ synchrotron IR, gas-phase IR, and thermal analyses to explore if the automotive shredder residue can be converted into value-added products. When heating to ~600 °C at different heating rates, thermal analyses suggested one- to two-stage pyrolysis. Transformations in the first stage, at lower temperatures, were attributed to the degradation of carbonyl, hydroxyl, or carboxyl functional stabilisers (aldehyde and ether impurities, additives, and stabilisers in the ASR). The second stage transformations, at higher temperatures, were attributed to the thermal degradation of the polymer char. Simultaneous thermal analyses and gas-phase IR spectroscopy confirmed the evolution of the gases (alkanes (CH4), CO2, and moisture). The synchrotron IR data have demonstrated that a high heating rate (such as 150 °C/min) results in an incomplete conversion of ASRs unless sufficient time is provided. The thermogravimetry data fit the linearised multistage kinetic model at different heating rates. The activation energy of reactions varied between 24.98 and 124.94 kJ/mol, indicating a surface-controlled reaction exhibiting high activation energy during the initial stages and a diffusion and mass transfer control showing lower activation energy at the final stages. The corresponding frequency factors were in the range of 3.34 × 1013-5.68 × 101 mg-1/min for different pyrolysis stages. The evolution of the functional groups decreased with an increase in the heating rate.

9.
J Adv Res ; 43: 137-146, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36585104

RESUMO

INTRODUCTION: Organic coatings are the most effective and facile methods of protecting steel against corrosion, which shields it from direct contact with oxygen and moisture. However, they are inherently defective and susceptible to damage, which allows the penetration of the corrosive media into the underlying substrates. Self-healing coatings were developed to address this shortcoming. OBJECTIVE: The current research aims to develop a coating with superior self-healing ability via embedment of titanium dioxide (TiO2) nanogel composite (NC) in a commercial epoxy. METHODS: The TiO2 NC was prepared by efficient dispersion of TiO2 nanoparticles in copolymer gel of acrylamide (AAm) and 2-acrylamido-2-methyl propane sulfonic acid (AMPS) with the help of 3-(trimethoxysilyl) propyl methacrylate (MPS). The chemical structure, morphology, and thermal properties of the modified and functionalized nanoparticles were assessed by infrared spectroscopy, electron microscopy, X-ray diffraction, and thermogravimetric analysis, respectively. In addition, TiO2 nanoparticles, nano-TiO2 functionalized monomer (NTFM), and NTFM/AAm/AMPS in different weight percentages were incorporated into epoxy resin to prepare a self-healing coating. RESULTS: The results confirmed the successful fabrication of the NC. In addition, the incorporation of 1 wt% NTFM/AAm/AMPS led to homogenous dispersion, enhanced anti-corrosive and self-healing performance with the healing efficiencies of 100% and 98%, which were determined by electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization methods, respectively. CONCLUSION: The prepared NC was sensitive towards salt concentration, pH, which aids the quick reaction of the TiO2 NC to corrosive ions, once the cracks occur. In addition, this is a unique feature compared to the other self-healing mechanisms, especially, the encapsulation of healing agents, which can be effective as long as the healing agent is present.


Assuntos
Resinas Epóxi , Polietilenoglicóis , Nanogéis , Polímeros
10.
ACS Omega ; 8(12): 11381-11396, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37008136

RESUMO

The exterior application of fire-retardant (FR) timber necessitates it to have high durability because of the possibility to be exposed to rainfall. In this study, water-leaching resistance of FR wood has been imparted by grafting phosphate and carbamate groups of the water-soluble FR additives ammonium dihydrogen phosphate (ADP)/urea onto the hydroxyl groups of wood polymers via vacuum-pressure impregnation, followed by drying/heating in hot air. A darker and more reddish wood surface was observed after the modification. Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, solid-state 13C cross-polarization magic-angle-spinning nuclear magnetic resonance (13C CP-MAS NMR), and direct-excitation 31P MAS NMR suggested the formation of C-O-P covalent bonds and urethane chemical bridges. Scanning electron microscopy/energy-dispersive X-ray spectrometry suggested the diffusion of ADP/urea into the cell wall. The gas evolution analyzed by thermogravimetric analysis coupled with quadrupole mass spectrometry revealed a potential grafting reaction mechanism starting with the thermal decomposition of urea. Thermal behavior showed that the FR-modified wood lowered the main decomposition temperature and promoted the formation of char residues at elevated temperatures. The FR activity was preserved even after an extensive water-leaching test, confirmed by the limiting oxygen index (LOI) and cone calorimetry. The reduction of fire hazards was achieved through the increase of the LOI to above 80%, reduction of 30% of the peak heat release rate (pHRR2), reduction of smoke production, and a longer ignition time. The modulus of elasticity of FR-modified wood increased by 40% without significantly decreasing the modulus of rupture.

11.
Sci Total Environ ; 897: 165290, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37406703

RESUMO

In the present study, the ability of a coating of zinc oxide (ZnO) powder to improve the fire-safety of wood exposed to radiative heat flux was examined, focusing on the ignition time of the wood. To test ZnO's efficiency on the wood substrate, two different amounts of ZnO (0.5 and 1 g ZnO per dm2) were applied to the wood surface and exposed to radiative heat from a cone calorimeter wherein a pristine piece of wood with no ZnO treatment was taken as control. The experiments were conducted at three different irradiation levels i.e., 20, 35, and 50 kWm-2. The results showed that applying ZnO on the surface of the wood significantly increased the ignition time (TTI). For the three different heat fluxes, using 0.5 g ZnO per dm2 coating on the wood surface increased the TTI by 26-33 %. Furthermore, the application of 1 g of ZnO per dm2 generated a TTI increment of 37-40 %. All three irradiation levels showed similar trends in TTI. The micrographs taken before and after combustion showed no significant disparity in the morphology of ZnO. The agglomerated ZnO particles on the wood surface remained intact after combustion. This study demonstrates a facile method of using ZnO to delay the ignition of wood. This could potentially impart fire-safety to wooden structures/façades in wildland-urban interfaces and elsewhere by reducing flame spread.

12.
Sci Rep ; 12(1): 21888, 2022 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-36535964

RESUMO

Durability and reliability are the key factors that prevent fuel cells from successful implementation in automotive sector. Dynamic load change is a common and frequent condition that the fuel cell has to undergo in automotive applications. Fuel cells are more sensitive to changes in load conditions and degrade based on load variation representing idling, rated power, and high power operating conditions. To examine the influence of dynamic load step on the fuel cell performance, two similar cells of active 25 cm2 was tested under two different load step for the same dynamic load cycle. The main difference in dynamic load cycle 2 was the ramp rate which was fixed as 0.1, 0.3, and 0.25 A/cm2/s for 0.2, 0.6, and 1.0 A/cm2 respectively. To investigate the degradative effects, polarization curves, electrochemical impedance spectroscopy, and field emission scanning electron microscopy were used. The results indicated that the degradation rate increased in both dynamic load cycles but however the impact of load change was comparatively minimal in dynamic load cycle 2. The total degradation in performance was 20.67% and 10.72% in dynamic load cycles 1 and 2 respectively. Fuel cell performance degraded in a manner that was consistent with the electrochemical impedance spectroscopy and cross-sectional analysis of field emission scanning electron microscopy. The results prove that the degradation rate is dependent on the load step and the number of load cycles. Severe catalyst degradation and delamination were observed in fuel cells operated under dynamic load cycle 1.


Assuntos
Allium , Estudos Transversais , Reprodutibilidade dos Testes , Eletrólitos , Polímeros
13.
Polymers (Basel) ; 14(9)2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35566878

RESUMO

With the advent of "intelligent" materials, the design of smart bioadhesives responding to chemical, physical, or biological stimuli has been widely developed in biomedical applications to minimize the risk of wounds reopening, chronic pain, and inflammation. Intelligent bioadhesives are free-flowing liquid solutions passing through a phase shift in the physiological environment due to stimuli such as light, temperature, pH, and electric field. They possess great merits, such as ease to access and the ability to sustained release as well as the spatial transfer of a biomolecule with reduced side effects. Tissue engineering, wound healing, drug delivery, regenerative biomedicine, cancer therapy, and other fields have benefited from smart bioadhesives. Recently, many disciplinary attempts have been performed to promote the functionality of smart bioadhesives and discover innovative compositions. However, according to our knowledge, the development of multifunctional bioadhesives for various biomedical applications has not been adequately explored. This review aims to summarize the most recent cutting-edge strategies (years 2015-2021) developed for stimuli-sensitive bioadhesives responding to external stimuli. We first focus on five primary categories of stimuli-responsive bioadhesive systems (pH, thermal, light, electric field, and biomolecules), their properties, and limitations. Following the introduction of principal criteria for smart bioadhesives, their performances are discussed, and certain smart polymeric materials employed in their creation in 2015 are studied. Finally, advantages, disadvantages, and future directions regarding smart bioadhesives for biomedical applications are surveyed.

14.
Sci Rep ; 12(1): 16887, 2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36207348

RESUMO

In this study, fused filament fabrication (FFF) printing parameters were optimized to improve the surface quality and reduce the printing time of Acrylonitrile Butadiene Styrene (ABS) polymer using the Analysis of Variance (ANOVA), it is a statistical analysis tool. A multi-objective optimization technique was employed to predict the optimum process parameter values using particle swarm optimization (PSO) and response surface methodology (RSM) techniques. Printing time and surface roughness were analyzed as a function of layer thickness, printing speed and nozzle temperature. A central composite design was preferred by employing the RSM method, and experiments were carried out as per the design of experiments (DoE). To understand the relationship between the identified input parameters and the output responses, several mathematical models were developed. After validating the accuracy of the developed regression model, these models were then coupled with PSO and RSM to predict the optimum parameter values. Moreover, the weighted aggregated sum product assessment (WASPAS) ranking method was employed to compare the RSM and PSO to identify the best optimization technique. WASPAS ranking method shows PSO has finer optimal values [printing speed of 125.6 mm/sec, nozzle temperature of 221 °C and layer thickness of 0.29 mm] than the RSM method. The optimum values were compared with the experimental results. Predicted parameter values through the PSO method showed high surface quality for the type of the surfaces, i.e., the surface roughness value of flat upper and down surfaces is approximately 3.92 µm, and this value for the other surfaces is lower, which is approximately 1.78 µm, at a minimum printing time of 24 min.

15.
Polymers (Basel) ; 14(9)2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35567003

RESUMO

Guanyl-urea phosphate (GUP) was introduced into furfurylated wood in order to improve fire retardancy. Modified wood was produced via vacuum-pressure impregnation of the GUP-furfuryl alcohol (FA) aqueous solution, which was then polymerized at elevated temperature. The water leaching resistance of the treated wood was tested according to European standard EN 84, while the leached water was analyzed using ultra-performance liquid chromatography (UPLC) and inductively coupled plasma-sector field mass spectrometry (ICP-SFMS). This new type of furfurylated wood was further characterized in the laboratory by evaluating its morphology and elemental composition using optical microscopy and electron microscopy coupled with energy-dispersive X-ray spectrometry (SEM-EDX). The chemical functionality was detected using infrared spectroscopy (FTIR), and the fire resistance was tested using cone calorimetry. The dimensional stability was evaluated in wet-dry soaking cycle tests, along with the mechanical properties, such as the Brinell hardness and bending strength. The fire retardancy of the modified furfurylated wood indicated that the flammability of wood can be depressed to some extent by introducing GUP. This was reflected in an observed reduction in heat release rate (HRR2) from 454.8 to 264.9 kW/m2, without a reduction in the material properties. In addition, this leaching-resistant furfurylated wood exhibited higher fire retardancy compared to conventional furfurylated wood. A potential method for producing fire-retardant treated furfurylated wood stable to water exposure has been suggested.

16.
Materials (Basel) ; 15(23)2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36500017

RESUMO

Composites can be divided into three groups based on their matrix materials, namely polymer, metal and ceramic. Composite materials fail due to micro cracks. Repairing is complex and almost impossible if cracks appear on the surface and interior, which minimizes reliability and material life. In order to save the material from failure and prolong its lifetime without compromising mechanical properties, self-healing is one of the emerging and best techniques. The studies to address the advantages and challenges of self-healing properties of different matrix materials are very limited; however, this review addresses all three different groups of composites. Self-healing composites are fabricated to heal cracks, prevent any obstructed failure, and improve the lifetime of structures. They can self-diagnose their structure after being affected by external forces and repair damages and cracks to a certain degree. This review aims to provide information on the recent developments and prospects of self-healing composites and their applications in various fields such as aerospace, automobiles etc. Fabrication and characterization techniques as well as intrinsic and extrinsic self-healing techniques are discussed based on the latest achievements, including microcapsule embedment, fibers embedment, and vascular networks self-healing.

17.
J Biomed Mater Res A ; 109(4): 437-452, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32856425

RESUMO

Over the last two decades, electrospun scaffolds have proved to be advantageous in the field of nerve tissue regeneration by connecting the cavity among the proximal and distal nerve stumps growth cones and leading to functional recovery after injury. Multifunctional nanofibrous structure of these scaffolds provides enormous potential by combining the advantages of nano-scale topography, and biological science. In these structures, selecting the appropriate materials, designing an optimized structure, modifying the surface to enhance biological functions and neurotrophic factors loading, and native cell-like stem cells should be considered as the essential factors. In this systematic review paper, the fabrication methods for the preparation of aligned nanofibrous scaffolds in yarn or conduit architecture are reviewed. Subsequently, the utilized polymeric materials, including natural, synthetic and blend are presented. Finally, their surface modification techniques, as well as, the recent advances and outcomes of the scaffolds, both in vitro and in vivo, are reviewed and discussed.


Assuntos
Regeneração Nervosa , Nervos Periféricos/fisiologia , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Animais , Humanos , Nanofibras/química , Nanofibras/uso terapêutico , Traumatismos dos Nervos Periféricos/terapia , Polímeros/química , Polímeros/uso terapêutico
18.
Polymers (Basel) ; 13(24)2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-34960903

RESUMO

Wood-based composites such as wood plastic composites (WPC) are emerging as a sustainable and excellent performance materials consisting of wood reinforced with polymer matrix with a variety of applications in construction industries. In this context, wood-based composite materials used in construction industries have witnessed a vigorous growth, leading to a great production activity. However, the main setbacks are their high flammability during fires. To address this issue, flame retardants are utilized to improve the performance of fire properties as well as the flame retardancy of WPC material. In this review, flame retardants employed during manufacturing process with their mechanical properties designed to achieve an enhanced flame retardancy were examined. The addition of flame retardants and manufacturing techniques applied were found to be an optimum condition to improve fire resistance and mechanical properties. The review focuses on the manufacturing techniques, applications, mechanical properties and flammability studies of wood fiber/flour polymer/plastics composites materials. Various flame retardant of WPCs and summary of future prospects were also highlighted.

19.
Polymers (Basel) ; 14(1)2021 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-35012067

RESUMO

To study the practicability of a micro combustion calorimeter to analyze the calorimetry kinetics of wood, a micro combustion calorimeter with 13 heating rates from 0.1 to 5.5 K/s was used to perform the analysis of 10 kinds of common hardwood and softwood samples. As a microscale combustion measurement method, MCC (microscale combustion calorimetry) can be used to judge the flammability of materials. However, there are two methods for measuring MCC: Method A and Method B. However, there is no uniform standard for the application of combustible MCC methods. In this study, the two MCC standard measurement Methods A and B were employed to check their practicability. With Method A, the maximum specific heat release rate, heat release temperature, and specific heat release of the samples were obtained at different heating rates, while for Method B, the maximum specific combustion rate, combustion temperature and net calorific values of the samples were obtained at different heating rates. The ignition capacity and heat release capacity were then derived and evaluated for all the common hardwood and softwood samples. The results obtained by the two methods have significant differences in the shape of the specific heat release rate curves and the amplitude of the characteristic parameters, which lead to the differences of the derived parameters. A comparison of the specific heat release and the net calorific heat of combustion with the gross caloric values and heating values obtained by bomb calorimetry was also made. The results show that Method B has the potentiality to evaluate the amount of combustion heat release of materials.

20.
Polymers (Basel) ; 13(16)2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34451131

RESUMO

The present study is aimed at investigating the effect of hybridisation on Kevlar/E-Glass based epoxy composite laminate structures. Composites with 3 mm thickness and 16 layers of fibre (14 layers of E-glass centred and 2 outer layers of Kevlar) were fabricated using compression moulding technique. The fibre orientation of the Kevlar layers had 3 variations (0, 45 and 60°), whereas the E-glass fibre layers were maintained at 0° orientation. Tensile, flexural, impact (Charpy and Izod), interlaminar shear strength and ballistic impact tests were conducted. The ballistic test was performed using a gas gun with spherical hard body projectiles at the projectile velocity of 170 m/s. The pre- and post-impact velocities of the projectiles were measured using a high-speed camera. The energy absorbed by the composite laminates was further reported during the ballistic test, and a computerised tomographic scan was used to analyse the impact damage. The composites with 45° fibre orientation of Kevlar fibres showed better tensile strength, flexural strength, Charpy impact strength, and energy absorption. The energy absorbed by the composites with 45° fibre orientation was 58.68 J, which was 14% and 22% higher than the 0° and 60° oriented composites.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA