Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 606(Pt 1): 353-366, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34392031

RESUMO

Design and facile fabrication of a magnetically separable hetero-structure photocatalyst as well as an adsorbent having dual green benefits towards energy conversion and pollutant remediation are quite indispensable in the current scenario. In this regard, a composite of citrate capped Fe3O4 and UiO-66-NH2 has been designed to remediate Cr (VI) by adsorption and harvest photons from visible light for clean energy (H2) conversion. The material was prepared by the union of citrate capped Fe3O4 (CCM) and versatile aqueous stable Zr-based MOF (UiO-66-NH2) through in-situ solvothermal method. The composite of CCM with MOF (MU-2) was studied through sophisticated analysis techniques; PXRD, FT-IR, BET, UV-Visible DRS, PL, TG, HRTEM and XPS etc. to reveal the inherent characteristics of the material. BET surface analysis revealed high specific surface area (572.13 m2 g-1) of MU-2 in comparison to its pristine MOF. Furthermore, the dual function composite MU-2's VSM studies showed that its magnetic saturation is 3.07 emu g-1 that is suitable for magnetic separation after desired reaction from aqueous media. The Cr (VI) sorption studies revealed that the composite adsorbent (MU-2) showed maximum monolayer adsorption capacity (Qm) of 743 mg g-1 which followed pseudo second order kinetics. Moreover, the sorption thermodynamics revealed that the process was spontaneous and endothermic in nature. In addition to it, the synthesized composite material displayed enhanced activity towards photocatalytic H2 evolution with a maximum evolution rate of 417 µmole h-1 with an apparent conversion efficiency (ACE) of 3.12 %. Typically, MU-2 displays high adsorptions of Cr (VI) as well as some extent of Cr (VI) reduction owning to its populous active sites and free carboxylate groups respectively. Moreover, the synergistic effect of CCM and UNH in the composite resulted in Z scheme mediated charge transfer mechanism that showed enhanced H2 photo-evolution rates. Hence, MU-2 can be readily utilized as magnetically retrievable dual function composite for Cr (VI) adsorption and photocatalytic H2 evolution.

2.
ACS Omega ; 3(3): 2532-2545, 2018 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-31458543

RESUMO

The extremely high adsorption efficiency of malachite green (MG) was examined through a series of batch experiments by using Fe3+-doped Mg/Al layered double hydroxides (LDHs). The incorporation of iron into Mg/Al LDH with varying Al + Fe molar ratio of 4 + 1, 3 + 2, 2 + 3, and 1 + 4 increased the adsorption capacity with respect to time. The spectral analysis and N2 sorption studies showed that there was retention of surface morphology in all of the iron-modified LDH samples. The experimental evidences showed that the adsorbent Mg/(Al + Fe) with a molar ratio of 10:2 + 3 had a significant removal, i.e., 99.94% for MG with the initial concentration of 1000 mg L-1 at pH ∼ 9 and at room temperature in 5 min. With further increase in iron loading (at ratio 10:1 + 4), there was a decrease in the removal of MG due to the agglomeration of Fe2O3 on the surface. The adsorption process was best fitted to the Freundlich isotherm followed by the pseudo-second-order model. The standard thermodynamic parameters (ΔH°, ΔS°, and ΔG°) were obtained over the temperature range of 20-50 °C. It was observed that the adsorption of MG onto Mg/(Al + Fe) LDH was spontaneous, exothermic, and enthalpy driven in the physisorption mode. A worthy desorption efficiency was achieved by using ethanol and water, which was more than 90% in the three cycles. Maintaining almost the same removal efficiency of MG even after three cycles indicated Mg/(Al + Fe) LDH as a promising material for wastewater treatment. This work was anticipated to open up new possibilities in dealing with anionic dye pollutants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA