Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Biomed Inform ; 142: 104374, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37120046

RESUMO

OBJECTIVE: While associations between HLA antigen-level mismatches (Ag-MM) and kidney allograft failure are well established, HLA amino acid-level mismatches (AA-MM) have been less explored. Ag-MM fails to consider the substantial variability in the number of MMs at polymorphic amino acid (AA) sites within any given Ag-MM category, which may conceal variable impact on allorecognition. In this study we aim to develop a novel Feature Inclusion Bin Evolver for Risk Stratification (FIBERS) and apply it to automatically discover bins of HLA amino acid mismatches that stratify donor-recipient pairs into low versus high graft survival risk groups. METHODS: Using data from the Scientific Registry of Transplant Recipients, we applied FIBERS on a multiethnic population of 166,574 kidney transplants between 2000 and 2017. FIBERS was applied (1) across all HLA-A, B, C, DRB1, and DQB1 locus AA-MMs with comparison to 0-ABDR Ag-MM risk stratification, (2) on AA-MMs within each HLA locus individually, and (3) using cross validation to evaluate FIBERS generalizability. The predictive power of graft failure risk stratification was evaluated while adjusting for donor/recipient characteristics and HLA-A, B, C, DRB1, and DQB1 Ag-MMs as covariates. RESULTS: FIBERS's best-performing bin (on AA-MMs across all loci) added significant predictive power (hazard ratio = 1.10, Bonferroni adj. p < 0.001) in stratifying graft failure risk (where low-risk is defined as zero AA-MMs and high-risk is one or more AA-MMs) even after adjusting for Ag-MMs and donor/recipient covariates. The best bin also categorized more than twice as many patients to the low-risk category, compared to traditional 0-ABDR Ag mismatching (∼24.4% vs âˆ¼ 9.1%). When HLA loci were binned individually, the bin for DRB1 exhibited the strongest risk stratification; relative to zero AA-MM, one or more MMs in the bin yielded HR = 1.11, p < 0.005 in a fully adjusted Cox model. AA-MMs at HLA-DRB1 peptide contact sites contributed most to incremental risk of graft failure. Additionally, FIBERS points to possible risk associated with HLA-DQB1 AA-MMs at positions that determine specificity of peptide anchor residues and HLA-DQ heterodimer stability. CONCLUSION: FIBERS's performance suggests potential for discovery of HLA immunogenetics-based risk stratification of kidney graft failure that outperforms traditional assessment.


Assuntos
Aminoácidos , Antígenos HLA-A , Humanos , Teste de Histocompatibilidade , Aloenxertos , Medição de Risco , Rim
2.
Bioengineering (Basel) ; 7(4)2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33019619

RESUMO

Acute myeloid leukemia (AML) is a fatal blood cancer that progresses rapidly and hinders the function of blood cells and the immune system. The current AML diagnostic method, a manual examination of the peripheral blood smear, is time consuming, labor intensive, and suffers from considerable inter-observer variation. Herein, a machine learning model to detect and classify immature leukocytes for efficient diagnosis of AML is presented. Images of leukocytes in AML patients and healthy controls were obtained from a publicly available dataset in The Cancer Imaging Archive. Image format conversion, multi-Otsu thresholding, and morphological operations were used for segmentation of the nucleus and cytoplasm. From each image, 16 features were extracted, two of which are new nucleus color features proposed in this study. A random forest algorithm was trained for the detection and classification of immature leukocytes. The model achieved 92.99% accuracy for detection and 93.45% accuracy for classification of immature leukocytes into four types. Precision values for each class were above 65%, which is an improvement on the current state of art. Based on Gini importance, the nucleus to cytoplasm area ratio was a discriminative feature for both detection and classification, while the two proposed features were shown to be significant for classification. The proposed model can be used as a support tool for the diagnosis of AML, and the features calculated to be most important serve as a baseline for future research.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA