Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Mol Psychiatry ; 25(10): 2392-2409, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-30617275

RESUMO

Smoking is a major heritable and modifiable risk factor for many diseases, including cancer, common respiratory disorders and cardiovascular diseases. Fourteen genetic loci have previously been associated with smoking behaviour-related traits. We tested up to 235,116 single nucleotide variants (SNVs) on the exome-array for association with smoking initiation, cigarettes per day, pack-years, and smoking cessation in a fixed effects meta-analysis of up to 61 studies (up to 346,813 participants). In a subset of 112,811 participants, a further one million SNVs were also genotyped and tested for association with the four smoking behaviour traits. SNV-trait associations with P < 5 × 10-8 in either analysis were taken forward for replication in up to 275,596 independent participants from UK Biobank. Lastly, a meta-analysis of the discovery and replication studies was performed. Sixteen SNVs were associated with at least one of the smoking behaviour traits (P < 5 × 10-8) in the discovery samples. Ten novel SNVs, including rs12616219 near TMEM182, were followed-up and five of them (rs462779 in REV3L, rs12780116 in CNNM2, rs1190736 in GPR101, rs11539157 in PJA1, and rs12616219 near TMEM182) replicated at a Bonferroni significance threshold (P < 4.5 × 10-3) with consistent direction of effect. A further 35 SNVs were associated with smoking behaviour traits in the discovery plus replication meta-analysis (up to 622,409 participants) including a rare SNV, rs150493199, in CCDC141 and two low-frequency SNVs in CEP350 and HDGFRP2. Functional follow-up implied that decreased expression of REV3L may lower the probability of smoking initiation. The novel loci will facilitate understanding the genetic aetiology of smoking behaviour and may lead to the identification of potential drug targets for smoking prevention and/or cessation.


Assuntos
Loci Gênicos , Fumar/genética , Bancos de Espécimes Biológicos , Bases de Dados Factuais , Europa (Continente)/etnologia , Exoma , Feminino , Humanos , Masculino , Polimorfismo de Nucleotídeo Único/genética , Reino Unido
2.
J Clin Microbiol ; 54(2): 274-82, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26582831

RESUMO

UNLABELLED: Blood transcriptional signatures are promising for tuberculosis (TB) diagnosis but have not been evaluated among U.S. PATIENTS: To be used clinically, transcriptional classifiers need reproducible accuracy in diverse populations that vary in genetic composition, disease spectrum and severity, and comorbidities. In a prospective case-control study, we identified novel transcriptional classifiers for active TB among U.S. patients and systematically compared their accuracy to classifiers from published studies. Blood samples from HIV-uninfected U.S. adults with active TB, pneumonia, or latent TB infection underwent whole-transcriptome microarray. We used support vector machines to classify disease state based on transcriptional patterns. We externally validated our classifiers using data from sub-Saharan African cohorts and evaluated previously published transcriptional classifiers in our population. Our classifier distinguishing active TB from pneumonia had an area under the concentration-time curve (AUC) of 96.5% (95.4% to 97.6%) among U.S. patients, but the AUC was lower (90.6% [89.6% to 91.7%]) in HIV-uninfected Sub-Saharan Africans. Previously published comparable classifiers had AUC values of 90.0% (87.7% to 92.3%) and 82.9% (80.8% to 85.1%) when tested in U.S. PATIENTS: Our classifier distinguishing active TB from latent TB had AUC values of 95.9% (95.2% to 96.6%) among U.S. patients and 95.3% (94.7% to 96.0%) among Sub-Saharan Africans. Previously published comparable classifiers had AUC values of 98.0% (97.4% to 98.7%) and 94.8% (92.9% to 96.8%) when tested in U.S. PATIENTS: Blood transcriptional classifiers accurately detected active TB among U.S. adults. The accuracy of classifiers for active TB versus that of other diseases decreased when tested in new populations with different disease controls, suggesting additional studies are required to enhance generalizability. Classifiers that distinguish active TB from latent TB are accurate and generalizable across populations and can be explored as screening assays.


Assuntos
Biomarcadores , Mycobacterium tuberculosis , Transcriptoma , Tuberculose/diagnóstico , Tuberculose/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/sangue , Estudos de Casos e Controles , Feminino , Perfilação da Expressão Gênica , Humanos , Tuberculose Latente , Masculino , Pessoa de Meia-Idade , Mycobacterium tuberculosis/fisiologia , Pneumonia/sangue , Pneumonia/diagnóstico , Pneumonia/genética , Curva ROC , Tuberculose/sangue , Tuberculose/epidemiologia , Estados Unidos/epidemiologia , Estados Unidos/etnologia , Adulto Jovem
3.
BMC Genomics ; 16: 1102, 2015 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-26704706

RESUMO

BACKGROUND: Central to most omic scale experiments is the interpretation and examination of resulting gene lists corresponding to differentially expressed, regulated, or observed gene or protein sets. Complicating interpretation is a lack of functional annotation assigned to a large percentage of many microbial genomes. This is particularly noticeable in mycobacterial genomes, which are significantly divergent from many of the microbial model species used for gene and protein functional characterization, but which are extremely important clinically. Mycobacterial species, ranging from M. tuberculosis to M. abscessus, are responsible for deadly infectious diseases that kill over 1.5 million people each year across the world. A better understanding of the coding capacity of mycobacterial genomes is therefore necessary to shed increasing light on putative mechanisms of virulence, pathogenesis, and functional adaptations. DESCRIPTION: Here we describe the improved functional annotation coverage of 11 important mycobacterial genomes, many involved in human diseases including tuberculosis, leprosy, and nontuberculous mycobacterial (NTM) infections. Of the 11 mycobacterial genomes, we provide 9899 new functional annotations, compared to NCBI and TBDB annotations, for genes previously characterized as genes of unknown function, hypothetical, and hypothetical conserved proteins. Functional annotations are available at our newly developed web resource MycoBASE (Mycobacterial Annotation Server) at strong.ucdenver.edu/mycobase. CONCLUSION: Improved annotations allow for better understanding and interpretation of genomic and transcriptomic experiments, including analyzing the functional implications of insertions, deletions, and mutations, inferring the function of understudied genes, and determining functional changes resulting from differential expression studies. MycoBASE provides a valuable resource for mycobacterial researchers, through improved and searchable functional annotations and functional enrichment strategies. MycoBASE will be continually supported and updated to include new genomes, enabling a powerful resource to aid the quest to better understand these important pathogenic and environmental species.


Assuntos
Bases de Dados Genéticas , Genoma Bacteriano , Genômica , Mycobacterium/genética , Software , Código de Barras de DNA Taxonômico , Ontologia Genética , Variação Genética , Genômica/métodos , Anotação de Sequência Molecular , Mycobacterium/classificação , Navegador
4.
Nat Med ; 25(12): 1851-1857, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31792462

RESUMO

Proteins are effector molecules that mediate the functions of genes1,2 and modulate comorbidities3-10, behaviors and drug treatments11. They represent an enormous potential resource for personalized, systemic and data-driven diagnosis, prevention, monitoring and treatment. However, the concept of using plasma proteins for individualized health assessment across many health conditions simultaneously has not been tested. Here, we show that plasma protein expression patterns strongly encode for multiple different health states, future disease risks and lifestyle behaviors. We developed and validated protein-phenotype models for 11 different health indicators: liver fat, kidney filtration, percentage body fat, visceral fat mass, lean body mass, cardiopulmonary fitness, physical activity, alcohol consumption, cigarette smoking, diabetes risk and primary cardiovascular event risk. The analyses were prospectively planned, documented and executed at scale on archived samples and clinical data, with a total of ~85 million protein measurements in 16,894 participants. Our proof-of-concept study demonstrates that protein expression patterns reliably encode for many different health issues, and that large-scale protein scanning12-16 coupled with machine learning is viable for the development and future simultaneous delivery of multiple measures of health. We anticipate that, with further validation and the addition of more protein-phenotype models, this approach could enable a single-source, individualized so-called liquid health check.


Assuntos
Proteínas Sanguíneas/genética , Composição Corporal/genética , Exercício Físico , Medicina de Precisão , Tecido Adiposo/metabolismo , Composição Corporal/fisiologia , Feminino , Humanos , Gordura Intra-Abdominal/metabolismo , Estilo de Vida , Fígado/metabolismo , Masculino , Fatores de Risco
5.
Nat Genet ; 51(2): 237-244, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30643251

RESUMO

Tobacco and alcohol use are leading causes of mortality that influence risk for many complex diseases and disorders1. They are heritable2,3 and etiologically related4,5 behaviors that have been resistant to gene discovery efforts6-11. In sample sizes up to 1.2 million individuals, we discovered 566 genetic variants in 406 loci associated with multiple stages of tobacco use (initiation, cessation, and heaviness) as well as alcohol use, with 150 loci evidencing pleiotropic association. Smoking phenotypes were positively genetically correlated with many health conditions, whereas alcohol use was negatively correlated with these conditions, such that increased genetic risk for alcohol use is associated with lower disease risk. We report evidence for the involvement of many systems in tobacco and alcohol use, including genes involved in nicotinic, dopaminergic, and glutamatergic neurotransmission. The results provide a solid starting point to evaluate the effects of these loci in model organisms and more precise substance use measures.


Assuntos
Consumo de Bebidas Alcoólicas/genética , Fumar/genética , Tabagismo/genética , Feminino , Variação Genética/genética , Estudo de Associação Genômica Ampla/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo , Risco , Nicotiana/efeitos adversos
6.
Tuberculosis (Edinb) ; 98: 50-5, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27156618

RESUMO

Tuberculosis (TB) is one of the leading causes of death due to an infectious disease in the world. Understanding the mechanisms of drug resistance has become pivotal in the detection and treatment of newly emerging resistant TB cases. We have analyzed three pairs of Mycobacterium tuberculosis strains pre- and post-drug treatment to identify mutations involved in the progression of resistance to the drugs rifampicin and isoniazid. In the rifampicin resistant strain, we confirmed a mutation in rpoB (S450L) that is known to confer resistance to rifampicin. We discovered a novel L101R mutation in the katG gene of an isoniazid resistant strain, which may directly contribute to isoniazid resistance due to the proximity of the mutation to the katG isoniazid-activating site. Another isoniazid resistant strain had a rare mutation in the start codon of katG. We also identified a number of mutations in each longitudinal pair, such as toxin-antitoxin mutations that may influence the progression towards resistance or may play a role in compensatory fitness. These findings improve our knowledge of drug resistance progression during therapy and provide a methodology to monitor longitudinal strains using whole genome sequencing, polymorphism comparison, and functional annotation.


Assuntos
Antituberculosos/uso terapêutico , Farmacorresistência Bacteriana Múltipla/genética , Genoma Bacteriano , Mutação , Mycobacterium tuberculosis/efeitos dos fármacos , Polimorfismo de Nucleotídeo Único , Tuberculose/tratamento farmacológico , Antituberculosos/efeitos adversos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Toxinas Bacterianas/química , Toxinas Bacterianas/genética , Catalase/química , Catalase/genética , Análise Mutacional de DNA , Genótipo , Humanos , Isoniazida/uso terapêutico , Testes de Sensibilidade Microbiana , Modelos Moleculares , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/patogenicidade , Fenótipo , Conformação Proteica , Rifampina/uso terapêutico , Relação Estrutura-Atividade , Fatores de Tempo , Resultado do Tratamento , Tuberculose/diagnóstico , Tuberculose/microbiologia
7.
BMC Syst Biol ; 8: 34, 2014 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-24655443

RESUMO

BACKGROUND: Although respiratory diseases exhibit in a wide array of clinical manifestations, certain respiratory diseases may share related genetic mechanisms or may be influenced by similar chemical stimuli. Here we explore and infer relationships among genes, diseases, and chemicals using network and matrix based clustering methods. RESULTS: In order to better understand and elucidate these shared genetic mechanisms and chemical relationships we analyzed a comprehensive collection of gene, disease, and chemical relationships pertinent to respiratory disease, using network and matrix based analysis approaches. Our methods enabled us to analyze relationships and make biological inferences among over 200 different respiratory and related diseases, involving thousands of gene-chemical-disease relationships. CONCLUSIONS: The resulting networks provided insight into shared mechanisms of respiratory disease and in some cases suggest novel targets or repurposed drug strategies.


Assuntos
Doenças Respiratórias/genética , Doenças Respiratórias/metabolismo , Biologia de Sistemas/métodos , Análise por Conglomerados , Biologia Computacional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA