Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
MAbs ; 6(4): 928-42, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24802048

RESUMO

The neonatal Fc receptor (FcRn) protects immunoglobulin G (IgG) from degradation and increases the serum half-life of IgG, thereby contributing to a higher concentration of IgG in the serum. Because altered FcRn binding may result in a reduced or prolonged half-life of IgG molecules, it is advisable to characterize Fc receptor binding of therapeutic antibody lead candidates prior to the start of pre-clinical and clinical studies. In this study, we characterized the interactions between FcRn of different species (human, cynomolgus monkey, mouse and rat) and nine IgG molecules from different species and isotypes with common variable heavy (VH) and variable light chain (VL) domains. Binding was analyzed at acidic and neutral pH using surface plasmon resonance (SPR) and biolayer interferometry (BLI). Furthermore, we transferred the well-accepted, but low throughput SPR-based method for FcRn binding characterization to the BLI-based Octet platform to enable a higher sample throughput allowing the characterization of FcRn binding already during early drug discovery phase. We showed that the BLI-based approach is fit-for-purpose and capable of discriminating between IgG molecules with significant differences in FcRn binding affinities. Using this high-throughput approach we investigated FcRn binding of 36 IgG molecules that represented all VH/VL region combinations available in the fully human, recombinant antibody library Ylanthia®. Our results clearly showed normal FcRn binding profiles for all samples. Hence, the variations among the framework parts, complementarity-determining region (CDR) 1 and CDR2 of the fragment antigen binding (Fab) domain did not significantly change FcRn binding.


Assuntos
Anticorpos Monoclonais/imunologia , Regiões Determinantes de Complementaridade/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Imunoglobulina G/imunologia , Cadeias Pesadas de Imunoglobulinas/imunologia , Cadeias Leves de Imunoglobulina/imunologia , Receptores Fc/imunologia , Animais , Anticorpos Monoclonais/genética , Linhagem Celular , Regiões Determinantes de Complementaridade/genética , Antígenos de Histocompatibilidade Classe I/genética , Humanos , Imunoglobulina G/genética , Cadeias Pesadas de Imunoglobulinas/genética , Cadeias Leves de Imunoglobulina/genética , Macaca fascicularis , Camundongos , Ligação Proteica , Ratos , Receptores Fc/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia
2.
MAbs ; 5(3): 445-70, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23571156

RESUMO

This report describes the design, generation and testing of Ylanthia, a fully synthetic human Fab antibody library with 1.3E+11 clones. Ylanthia comprises 36 fixed immunoglobulin (Ig) variable heavy (VH)/variable light (VL) chain pairs, which cover a broad range of canonical complementarity-determining region (CDR) structures. The variable Ig heavy and Ig light (VH/VL) chain pairs were selected for biophysical characteristics favorable to manufacturing and development. The selection process included multiple parameters, e.g., assessment of protein expression yield, thermal stability and aggregation propensity in fragment antigen binding (Fab) and IgG1 formats, and relative Fab display rate on phage. The framework regions are fixed and the diversified CDRs were designed based on a systematic analysis of a large set of rearranged human antibody sequences. Care was taken to minimize the occurrence of potential posttranslational modification sites within the CDRs. Phage selection was performed against various antigens and unique antibodies with excellent biophysical properties were isolated. Our results confirm that quality can be built into an antibody library by prudent selection of unmodified, fully human VH/VL pairs as scaffolds.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Imunoglobulina G/metabolismo , Imunoterapia , Anticorpos Monoclonais/genética , Afinidade de Anticorpos , Células Cultivadas , Regiões Determinantes de Complementaridade/genética , Dimerização , Desenho de Fármacos , Expressão Gênica , Biblioteca Gênica , Humanos , Imunoglobulina G/genética , Cadeias Pesadas de Imunoglobulinas/genética , Cadeias Leves de Imunoglobulina/genética , Engenharia de Proteínas , Estabilidade Proteica
3.
PLoS One ; 7(8): e42465, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22905136

RESUMO

As synthetic biology advances, labeling of genes or organisms, like other high-value products, will become important not only to pinpoint their identity, origin, or spread, but also for intellectual property, classification, bio-security or legal reasons. Ideally information should be inseparably interlaced into expressed genes. We describe a method for embedding messages within open reading frames of synthetic genes by adapting steganographic algorithms typically used for watermarking digital media files. Text messages are first translated into a binary string, and then represented in the reading frame by synonymous codon choice. To aim for good expression of the labeled gene in its host as well as retain a high degree of codon assignment flexibility for gene optimization, codon usage tables of the target organism are taken into account. Preferably amino acids with 4 or 6 synonymous codons are used to comprise binary digits. Several different messages were embedded into open reading frames of T7 RNA polymerase, GFP, human EMG1 and HIV gag, variously optimized for bacterial, yeast, mammalian or plant expression, without affecting their protein expression or function. We also introduced Vigenère polyalphabetic substitution to cipher text messages, and developed an identifier as a key to deciphering codon usage ranking stored for a specific organism within a sequence of 35 nucleotides.


Assuntos
Genes Sintéticos , Técnicas Genéticas , Códon , Biologia Computacional/métodos , Mapeamento de Sequências Contíguas , RNA Polimerases Dirigidas por DNA/genética , Regulação da Expressão Gênica , Proteínas de Fluorescência Verde/genética , Células HEK293 , Humanos , Metiltransferases/genética , Modelos Genéticos , Proteínas Nucleares/genética , Nucleotídeos/genética , Fases de Leitura Aberta , Saccharomyces cerevisiae/metabolismo , Proteínas Virais/genética , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética
4.
Protein Sci ; 19(7): 1312-26, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20506237

RESUMO

The genetic code is universal, but recombinant protein expression in heterologous systems is often hampered by divergent codon usage. Here, we demonstrate that reprogramming by standardized multi-parameter gene optimization software and de novo gene synthesis is a suitable general strategy to improve heterologous protein expression. This study compares expression levels of 94 full-length human wt and sequence-optimized genes coding for pharmaceutically important proteins such as kinases and membrane proteins in E. coli. Fluorescence-based quantification revealed increased protein yields for 70% of in vivo expressed optimized genes compared to the wt DNA sequences and also resulted in increased amounts of protein that can be purified. The improvement in transgene expression correlated with higher mRNA levels in our analyzed examples. In all cases tested, expression levels using wt genes in tRNA-supplemented bacterial strains were outperformed by optimized genes expressed in non-supplemented host cells.


Assuntos
Escherichia coli/metabolismo , Proteínas/metabolismo , Códon/genética , Escherichia coli/genética , Humanos , Proteínas/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA