Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
BMC Cancer ; 21(1): 833, 2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-34281526

RESUMO

BACKGROUND: Epithelioid sarcomas and rhabdoid tumors are rare, aggressive malignancies with poor prognosis. Both are characterized by INI1 alterations and deregulation of growth factor receptors albeit their interaction has not been elucidated. METHODS: In this study, we investigated the activity of a panel of epigenetic modulators and receptor tyrosine kinase inhibitors in vitro on respective cell lines as well as on primary patient-derived epithelioid sarcoma cells, and in vivo on xenografted mice. Focusing on histone deacetylase (HDAC) inhibitors, we studied the mechanism of action of this class of agents, its effect on growth factor receptor regulation, and changes in epithelial-to-mesenchymal transition by using cell- and RT-qPCR-based assays. RESULTS: Pan-HDAC inhibitor panobinostat exhibited potent anti-proliferative activity at low nanomolar concentrations in A204 rhabdoid tumor, and VAESBJ/GRU1 epithelioid sarcoma cell lines, strongly induced apoptosis, and resulted in significant tumor growth inhibition in VAESBJ xenografts. It differentially regulated EGFR, FGFR1 and FGFR2, leading to downregulation of EGFR in epithelioid sarcoma and to mesenchymal-to-epithelial transition whereas in rhabdoid tumor cells, EGFR was strongly upregulated and reinforced the mesenchymal phenotype. All three cell lines were rendered more susceptible towards combination with EGFF inhibitor erlotinib, further enhancing apoptosis. CONCLUSIONS: HDAC inhibitors exhibit significant anticancer activity due to their multifaceted actions on cytotoxicity, differentiation and drug sensitization. Our data suggest that the tailored, tissue-specific combination of HDAC inhibitors with therapeutics which target cellular salvage mechanisms might increase their therapeutic relevance.


Assuntos
Transição Epitelial-Mesenquimal/efeitos dos fármacos , Inibidores de Histona Desacetilases/uso terapêutico , Panobinostat/uso terapêutico , Receptores de Fatores de Crescimento/metabolismo , Tumor Rabdoide/tratamento farmacológico , Sarcoma/tratamento farmacológico , Animais , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Inibidores de Histona Desacetilases/farmacologia , Humanos , Camundongos , Camundongos Nus , Panobinostat/farmacologia , Tumor Rabdoide/patologia , Sarcoma/patologia
2.
Pharm Res ; 33(8): 1913-22, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27091031

RESUMO

PURPOSE: Busulfan-melphalan high-dose chemotherapy followed by autologous stem cell transplantation is an essential consolidation treatment of high-risk neuroblastoma in children. Main treatment limitation is hepatic veno-occlusive disease, the most severe and frequent extra-hematological toxicity. This life threatening toxicity has been related to a drug interaction between busulfan and melphalan which might be increased by prior disturbance of iron homeostasis, i.e. an increased plasma ferritin level. METHODS: We performed an experimental study of busulfan and melphalan pharmacodynamic and pharmacokinetics in iron overloaded mice. RESULTS: Iron excess dramatically increased the toxicity of melphalan or busulfan melphalan combination in mice but it did not modify the clearance of either busulfan or melphalan. We show that prior busulfan treatment impairs the clearance of melphalan. This clearance alteration was exacerbated in iron overloaded mice demonstrating a pharmacokinetic interaction. Additionally, iron overload increased melphalan toxicity without altering its pharmacokinetics, suggesting a pharmacodynamic interaction between iron and melphalan. Based on iron homeostasis disturbance, we postulated that prior induction of ferritin, through Nrf2 activation after oxidative stress, may be associated with the alteration of melphalan metabolism. CONCLUSION: Iron overload increases melphalan and busulfan-melphalan toxicity through a pharmacodynamic interaction and reveals a pharmacokinetic drug interaction between busulfan and melphalan.


Assuntos
Bussulfano/metabolismo , Bussulfano/toxicidade , Sobrecarga de Ferro/metabolismo , Melfalan/metabolismo , Melfalan/toxicidade , Animais , Antineoplásicos Alquilantes/metabolismo , Antineoplásicos Alquilantes/toxicidade , Interações Medicamentosas/fisiologia , Sobrecarga de Ferro/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
3.
Anticancer Drugs ; 26(3): 272-83, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25486598

RESUMO

Notch signaling is altered in many cancers. Our previous findings in primary pediatric ependymoma support a role for NOTCH in glial oncogenesis. The present study evaluates the γ-secretase inhibitor RO4929097 in glial tumor models. The expression of Notch pathway genes was evaluated using real-time RT-PCR in 21 ependymoma and glioma models. NOTCH1 mutations were analyzed by DNA sequencing. RO4929097 activity was evaluated in vitro and in vivo, as a single agent and in combination, in glioma and ependymoma models. Notch pathway genes are overexpressed in ependymomas and gliomas along with FBXW7 downregulation. NOTCH1 mutations in the TAD domain were observed in 20% (2/10) of ependymoma primary cultures. Blocking the Notch pathway with the γ-secretase inhibitor RO4929097 reduced cell density and viability in ependymoma short-term cultures. When combined with chemotherapeutic agents, RO4929097 enhanced temozolomide effects in ependymoma short-term cultures and potentiated the cytotoxicity of etoposide, cisplatinum, and temozolomide in glioma cells. RO4929097, in combined treatment with mTOR inhibition, potentiated cytotoxicity in vitro, but did not enhance antitumor effects in vivo. In contrast, RO4929097 enhanced irradiation effects in glioma and ependymoma xenografts and showed tumor growth inhibition in advanced-stage IGRG121 glioblastoma xenografts. RO4929097-mediated effects were independent of NOTCH1 mutation status or expression levels, but associated with low IL-6 levels. In established glial tumor models, NOTCH inhibition had limited effects as a single agent, but enhanced efficacy when combined with DNA-interfering agents. These preclinical data need to be considered for further clinical development of NOTCH inhibitors in glial tumors.


Assuntos
Benzazepinas/farmacologia , Glioma/tratamento farmacológico , Receptor Notch1/metabolismo , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Ependimoma/tratamento farmacológico , Ependimoma/genética , Ependimoma/metabolismo , Ependimoma/patologia , Regulação Neoplásica da Expressão Gênica , Glioma/genética , Glioma/metabolismo , Glioma/patologia , Glioma/radioterapia , Humanos , Interleucina-6/genética , Camundongos Nus , Terapia de Alvo Molecular , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/farmacologia , Receptor Notch1/genética , Transdução de Sinais , Sirolimo/administração & dosagem , Sirolimo/análogos & derivados , Serina-Treonina Quinases TOR/antagonistas & inibidores , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Commun Biol ; 6(1): 949, 2023 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-37723198

RESUMO

Pediatric patients with recurrent and refractory cancers are in most need for new treatments. This study developed patient-derived-xenograft (PDX) models within the European MAPPYACTS cancer precision medicine trial (NCT02613962). To date, 131 PDX models were established following heterotopical and/or orthotopical implantation in immunocompromised mice: 76 sarcomas, 25 other solid tumors, 12 central nervous system tumors, 15 acute leukemias, and 3 lymphomas. PDX establishment rate was 43%. Histology, whole exome and RNA sequencing revealed a high concordance with the primary patient's tumor profile, human leukocyte-antigen characteristics and specific metabolic pathway signatures. A detailed patient molecular characterization, including specific mutations prioritized in the clinical molecular tumor boards are provided. Ninety models were shared with the IMI2 ITCC Pediatric Preclinical Proof-of-concept Platform (IMI2 ITCC-P4) for further exploitation. This PDX biobank of unique recurrent childhood cancers provides an essential support for basic and translational research and treatments development in advanced pediatric malignancies.


Assuntos
Leucemia , Neoplasias , Animais , Criança , Humanos , Camundongos , Bancos de Espécimes Biológicos , Modelos Animais de Doenças , Xenoenxertos , Neoplasias/genética , Medicina de Precisão , Ensaios Clínicos como Assunto
5.
Int J Cancer ; 128(11): 2748-58, 2011 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-20715103

RESUMO

Tumor angiogenesis in childhood neuroblastoma is an important prognostic factor suggesting a potential role for antiangiogenic agents in the treatment of high-risk disease. Within the KidsCancerKinome project, we evaluated the new oral selective pan-VEGFR tyrosine kinase inhibitor axitinib (AG-013736) against neuroblastoma cell lines and the subcutaneous and orthotopic xenograft model IGR-N91 derived from a primary bone marrow metastasis. Axitinib reduced cell proliferation in a dose-dependent manner with IC(50) doses between 274 and >10,000 nmol/l. Oral treatment with 30 mg/kg BID for 2 weeks in advanced tumors yielded significant tumor growth delay, with a median time to reach five times initial tumor volume of 11.4 days compared to controls (p = 0.0006) and resulted in significant reduction in bioluminescence. Simultaneous inhibition of VEGFR downstream effector mTOR using rapamycin 20 mg/kg q2d×5 did not statistically enhance tumor growth delay compared to single agent activities. Axitinib downregulated VEGFR-2 phosphorylation resulting in significantly decreased microvessel density (MVD) and overall surface fraction of tumor vessels (OSFV) in all xenografts as measured by CD34 immunohistochemical staining (mean MVD ± SD and OSFV at 14 days 21.27 ± 10.03 in treated tumors vs. 48.79 ± 17.27 in controls and 0.56% vs. 1.29%; p = 0.0006, respectively). We further explored the effects of axitinib on circulating mature endothelial cells (CECs) and endothelial progenitor cells (CEPs) measured by flow cytometry. While only transient modification was observed for CECs, CEP counts were significantly reduced during and up to 14 days after end of treatment. Axitinib has potent antiangiogenic properties that may warrant further evaluation in neuroblastoma.


Assuntos
Neoplasias da Medula Óssea/tratamento farmacológico , Imidazóis/uso terapêutico , Indazóis/uso terapêutico , Neuroblastoma/tratamento farmacológico , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Apoptose , Axitinibe , Western Blotting , Neoplasias da Medula Óssea/secundário , Criança , Sinergismo Farmacológico , Endotélio Vascular/citologia , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Humanos , Masculino , Camundongos , Camundongos Nus , Neovascularização Patológica/tratamento farmacológico , Neuroblastoma/irrigação sanguínea , Neuroblastoma/patologia , Fosforilação , Sirolimo/farmacologia , Células-Tronco/efeitos dos fármacos , Células Tumorais Cultivadas
6.
Cancers (Basel) ; 11(7)2019 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-31319571

RESUMO

Osteosarcoma, the most common bone malignancy with a peak incidence at adolescence, had no survival improvement since decades. Persistent problems are chemo-resistance and metastatic spread. We developed in-vitro osteosarcoma models resistant to chemotherapy and in-vivo bioluminescent orthotopic cell-derived-xenografts (CDX). Continuous increasing drug concentration cultures in-vitro resulted in five methotrexate (MTX)-resistant and one doxorubicin (DOXO)-resistant cell lines. Resistance persisted after drug removal except for MG-63. Different resistance mechanisms were identified, affecting drug transport and action mechanisms specific to methotrexate (RFC/SCL19A1 decrease, DHFR up-regulation) for MTX-resistant lines, or a multi-drug phenomenon (PgP up-regulation) for HOS-R/DOXO. Differential analysis of copy number abnormalities (aCGH) and gene expression (RNAseq) revealed changes of several chromosomic regions translated at transcriptomic level depending on drug and cell line, as well as different pathways implicated in invasive and metastatic potential (e.g., Fas, Metalloproteinases) and immunity (enrichment in HLA cluster genes in 6p21.3) in HOS-R/DOXO. Resistant-CDX models (HOS-R/MTX, HOS-R/DOXO and Saos-2-B-R/MTX) injected intratibially into NSG mice behaved as their parental counterpart at primary tumor site; however, they exhibited a slower growth rate and lower metastatic spread, although they retained resistance and CGH main characteristics without drug pressure. These models represent valuable tools to explore resistance mechanisms and new therapies in osteosarcoma.

7.
Oncotarget ; 10(48): 4937-4950, 2019 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-31452835

RESUMO

The ALK gene is a major oncogene of neuroblastoma cases exhibiting ALK activating mutations. Here, we characterized two neuroblastoma cell lines established from a stage 4 patient at diagnosis either from the primary tumor (PT) or from the bone marrow (BM). Both cell lines exhibited similar genomic profiles. All cells in the BM-derived cell line exhibited an ALK F1174L mutation, whereas this mutation was present in only 5% of the cells in the earliest passages of the PT-derived cell line. The BM-derived cell line presented with a higher proliferation rate in vitro and injections in Nude mice resulted in tumor formation only for the BM-derived cell line. Next, we observed that the F1174L mutation frequency in the PT-derived cell line increased with successive passages. Further Whole Exome Sequencing revealed a second ALK mutation, L1196M, in this cell line. Digital droplet PCR documented that the allele fractions of both mutations changed upon passages, and that the F1174L mutation reached 50% in late passages, indicating clonal evolution. In vitro treatment of the PT-derived cell line exhibiting the F1174L and L1196M mutations with the alectinib inhibitor resulted in an enrichment of the L1196M mutation. Using xenografts, we documented a better efficacy of alectinib compared to crizotinib on tumor growth and an enrichment of the L1196M mutation at the end of both treatments. Finally, single-cell RNA-seq analysis was consistent with both mutations resulting in ALK activation. Altogether, this study provides novel insights into ALK mutation dynamics in a neuroblastoma model harbouring two ALK mutations.

8.
Cancer Med ; 7(3): 665-676, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29473324

RESUMO

Osteosarcoma is one of the most common primary bone tumors in childhood and adolescence. Metastases occurrence at diagnosis or during disease evolution is the main therapeutic challenge. New drug evaluation to improve patient survival requires the development of various preclinical models mimicking at best the complexity of the disease and its metastatic potential. We describe here the development and characteristics of two orthotopic bioluminescent (Luc/mKate2) cell-derived xenograft (CDX) models, Saos-2-B-Luc/mKate2-CDX and HOS-Luc/mKate2-CDX, in different immune (nude and NSG mouse strains) and bone (intratibial and paratibial with periosteum activation) contexts. IVIS SpectrumCT system allowed both longitudinal computed tomography (CT) and bioluminescence real-time follow-up of primary tumor growth and metastatic spread, which was confirmed by histology. The murine immune context influenced tumor engraftment, primary tumor growth, and metastatic spread to lungs, bone, and spleen (an unusual localization in humans). Engraftment in NSG mice was found superior to that found in nude mice and intratibial bone environment more favorable to engraftment compared to paratibial injection. The genetic background of the two CDX models also led to distinct primary tumor behavior observed on CT scan. Saos-2-B-Luc/mKate2-CDX showed osteocondensed, HOS-Luc/mKate2-CDX osteolytic morphology. Bioluminescence defined a faster growth of the primary tumor and metastases in Saos-2-B-Luc/mKate2-CDX than in HOS-Luc/mKate2-CDX. The early detection of primary tumor growth and metastatic spread by bioluminescence allows an improved exploration of osteosarcoma disease at tumor progression, and metastatic spread, as well as the evaluations of anticancer treatments. Our orthotopic models with metastatic spread bring complementary information to other types of existing osteosarcoma models.


Assuntos
Osteossarcoma/diagnóstico , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Humanos , Medições Luminescentes , Camundongos , Camundongos Nus , Osteossarcoma/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Int J Oncol ; 50(1): 203-211, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27922668

RESUMO

MET is expressed on neuroblastoma cells and may trigger tumor growth, neoangiogenesis and metastasis. MET upregulation further represents an escape mechanism to various anticancer treatments including VEGF signaling inhibitors. We developed in vitro a resistance model to pan-VEGFR inhibition and explored the simultaneous inhibition of VEGFR and MET in neuroblastoma models in vitro and in vivo using cabozantinib, an inhibitor of the tyrosine kinases including VEGFR2, MET, AXL and RET. Resistance in IGR-N91-Luc neuroblastoma cells under continuous in vitro exposure pressure to VEGFR1-3 inhibition using axitinib was associated with HGF and p-ERK overexpression. Cabozantinib exhibited anti-proliferative effects in neuroblastoma cells and reduced cell migration in vitro as measured by phase-contrast with IncuCyte system. In vivo, an enhanced number of animals with IGR-N91-Luc metastases was noted following axitinib treatment as compared to control animals. Orally administered cabozantinib per gavage at 30 and 60 mg/kg/day significantly inhibited tumor growth of orthotopic adrenal IGR-N91-Luc and metastatic IMR-32-Luc xenografts. Antitumor activity was associated with decreased vascularization, inhibition of p-SRC and induction of apoptotic cell death. Activation of the HGF-mediated MET pathway is involved in escape to selective VEGFR inhibition in neuroblastoma suggesting combined inhibition of MET and VEGFR signaling to reduce secondary resistance and enhanced invasiveness.


Assuntos
Anilidas/administração & dosagem , Fator de Crescimento de Hepatócito/biossíntese , Neuroblastoma/tratamento farmacológico , Proteínas Proto-Oncogênicas c-met/genética , Piridinas/administração & dosagem , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/biossíntese , Animais , Apoptose/efeitos dos fármacos , Axitinibe , Resistencia a Medicamentos Antineoplásicos/genética , MAP Quinases Reguladas por Sinal Extracelular/genética , Fator de Crescimento de Hepatócito/genética , Humanos , Imidazóis/administração & dosagem , Indazóis/administração & dosagem , Camundongos , Invasividade Neoplásica/genética , Neuroblastoma/genética , Neuroblastoma/patologia , Inibidores de Proteínas Quinases/administração & dosagem , Proteínas Proto-Oncogênicas c-met/biossíntese , Fator A de Crescimento do Endotélio Vascular/biossíntese , Fator A de Crescimento do Endotélio Vascular/genética , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/genética , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Nat Genet ; 49(9): 1408-1413, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28740262

RESUMO

Neuroblastoma is a tumor of the peripheral sympathetic nervous system, derived from multipotent neural crest cells (NCCs). To define core regulatory circuitries (CRCs) controlling the gene expression program of neuroblastoma, we established and analyzed the neuroblastoma super-enhancer landscape. We discovered three types of identity in neuroblastoma cell lines: a sympathetic noradrenergic identity, defined by a CRC module including the PHOX2B, HAND2 and GATA3 transcription factors (TFs); an NCC-like identity, driven by a CRC module containing AP-1 TFs; and a mixed type, further deconvoluted at the single-cell level. Treatment of the mixed type with chemotherapeutic agents resulted in enrichment of NCC-like cells. The noradrenergic module was validated by ChIP-seq. Functional studies demonstrated dependency of neuroblastoma with noradrenergic identity on PHOX2B, evocative of lineage addiction. Most neuroblastoma primary tumors express TFs from the noradrenergic and NCC-like modules. Our data demonstrate a previously unknown aspect of tumor heterogeneity relevant for neuroblastoma treatment strategies.


Assuntos
Linhagem da Célula/genética , Regulação Neoplásica da Expressão Gênica/genética , Neuroblastoma/genética , Fatores de Transcrição/genética , Animais , Western Blotting , Linhagem Celular Tumoral/classificação , Linhagem da Célula/efeitos dos fármacos , Doxiciclina/farmacologia , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Heterogeneidade Genética , Células HEK293 , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Neuroblastoma/tratamento farmacológico , Neuroblastoma/metabolismo , Interferência de RNA , Terapêutica com RNAi , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Célula Única , Fatores de Transcrição/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA