Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Plant Cell ; 35(9): 3444-3469, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37260348

RESUMO

In leaves of C3 and C4 plants, stomata open during the day to favor CO2 entry for photosynthesis and close at night to prevent inefficient transpiration of water vapor. The circadian clock paces rhythmic stomatal movements throughout the diel (24-h) cycle. Leaf transitory starch is also thought to regulate the diel stomatal movements, yet the underlying mechanisms across time (key moments) and space (relevant leaf tissues) remain elusive. Here, we developed PhenoLeaks, a pipeline to analyze the diel dynamics of transpiration, and used it to screen a series of Arabidopsis (Arabidopsis thaliana) mutants impaired in starch metabolism. We detected a sinusoidal, endogenous rhythm of transpiration that overarches days and nights. We determined that a number of severe mutations in starch metabolism affect the endogenous rhythm through a phase shift, resulting in delayed stomatal movements throughout the daytime and diminished stomatal preopening during the night. Nevertheless, analysis of tissue-specific mutations revealed that neither guard-cell nor mesophyll-cell starch metabolisms are strictly required for normal diel patterns of transpiration. We propose that leaf starch influences the timing of transpiration rhythm through an interplay between the circadian clock and sugars across tissues, while the energetic effect of starch-derived sugars is usually nonlimiting for endogenous stomatal movements.


Assuntos
Arabidopsis , Estômatos de Plantas , Estômatos de Plantas/metabolismo , Folhas de Planta/metabolismo , Metabolismo dos Carboidratos , Fotossíntese , Arabidopsis/metabolismo , Amido/metabolismo
2.
PLoS Pathog ; 16(5): e1008557, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32413076

RESUMO

Plant virus pathogenicity is expected to vary with changes in the abiotic environment that affect plant physiology. Conversely, viruses can alter the host plant response to additional stimuli from antagonism to mutualism depending on the virus, the host plant and the environment. Ecological theory, specifically the CSR framework of plant strategies developed by Grime and collaborators, states that plants cannot simultaneously optimize resistance to both water deficit and pathogens. Here, we investigated the vegetative and reproductive performance of 44 natural accessions of A. thaliana originating from the Iberian Peninsula upon simultaneous exposure to soil water deficit and viral infection by the Cauliflower mosaic virus (CaMV). Following the predictions of Grime's CSR theory, we tested the hypothesis that the ruderal character of a plant genotype is positively related to its tolerance to virus infection regardless of soil water availability. Our results showed that CaMV infection decreased plant vegetative performance and annihilated reproductive success of all accessions. In general, water deficit decreased plant performance, but, despite differences in behavior, ranking of accessions tolerance to CaMV was conserved under water deficit. Ruderality, quantified from leaf traits following a previously published procedure, varied significantly among accessions, and was positively correlated with tolerance to viral infection under both well-watered and water deficit conditions, although the latter to a lesser extent. Also, in accordance with the ruderal character of the accession and previous findings, our results suggest that accession tolerance to CaMV infection is positively correlated with early flowering. Finally, plant survival to CaMV infection increased under water deficit. The complex interactions between plant, virus and abiotic environment are discussed in terms of the variation in plant ecological strategies at the intraspecific level.


Assuntos
Arabidopsis , Caulimovirus , Variação Genética , Genótipo , Doenças das Plantas , Arabidopsis/genética , Arabidopsis/virologia , Desidratação/genética , Desidratação/virologia , Doenças das Plantas/genética , Doenças das Plantas/virologia
3.
New Phytol ; 232(6): 2295-2307, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34617285

RESUMO

The formation of Casparian strips (CS) and the deposition of suberin at the endodermis of plant roots are thought to limit the apoplastic transport of water and ions. We investigated the specific role of each of these apoplastic barriers in the control of hydro-mineral transport by roots and the consequences on shoot growth. A collection of Arabidopsis thaliana mutants defective in suberin deposition and/or CS development was characterized under standard conditions using a hydroponic system and the Phenopsis platform. Mutants altered in suberin deposition had enhanced root hydraulic conductivity, indicating a restrictive role for this compound in water transport. In contrast, defective CS directly increased solute leakage and indirectly reduced root hydraulic conductivity. Defective CS also led to a reduction in rosette growth, which was partly dependent on the hydro-mineral status of the plant. Ectopic suberin was shown to partially compensate for defective CS phenotypes. Altogether, our work shows that the functionality of the root apoplastic diffusion barriers greatly influences the plant physiology, and that their integrity is tightly surveyed.


Assuntos
Arabidopsis , Água , Arabidopsis/genética , Parede Celular , Lipídeos , Raízes de Plantas
4.
Plant Physiol ; 174(3): 1913-1930, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28522456

RESUMO

Acclimation to water deficit (WD) enables plants to maintain growth under unfavorable environmental conditions, although the mechanisms are not completely understood. In this study, the natural variation of long-term acclimation to moderate and severe soil WD was investigated in 18 Arabidopsis (Arabidopsis thaliana) accessions using PHENOPSIS, an automated phenotyping platform. Soil water content was adjusted at an early stage of plant development and maintained at a constant level until reproductive age was achieved. The accessions were selected based on the expression levels of ANNEXIN1, a drought-related marker. Severe WD conditions had a greater effect on most of the measured morphophysiological traits than moderate WD conditions. Multivariate analyses indicated that trait responses associated with plant size and water management drove most of the variation. Accessions with similar responses at these two levels were grouped in clusters that displayed different response strategies to WD The expression levels of selected stress-response genes revealed large natural variation under WD conditions. Responses of morphophysiological traits, such as projected rosette area, transpiration rate, and rosette water content, were correlated with changes in the expression of stress-related genes, such as NINE-CIS-EPOXYCAROTENOID DIOXYGENASE3 and N-MYC DOWNREGULATED-LIKE1 (NDL1), in response to WD Interestingly, the morphophysiological acclimation response to WD also was reflected in the gene expression levels (most notably those of NDL1, CHALCONE SYNTHASE, and MYB DOMAIN PROTEIN44) in plants cultivated under well-watered conditions. Our results may lead to the development of biomarkers and predictors of plant morphophysiological responses based on gene expression patterns.


Assuntos
Arabidopsis/anatomia & histologia , Arabidopsis/fisiologia , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico/genética , Água/fisiologia , Arabidopsis/genética , Ecótipo , Fenótipo , Transpiração Vegetal/genética , Análise de Componente Principal , Solo
5.
Ann Bot ; 122(7): 1173-1185, 2018 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-29982438

RESUMO

Background and Aims: The question of which cellular mechanisms determine the variation in leaf size has been addressed mainly in plants with simple leaves. It is addressed here in tomato taking into consideration the expected complexity added by the several lateral appendages making up the compound leaf, the leaflets. Methods: Leaf and leaflet areas, epidermal cell number and areas, and endoreduplication (co-) variations were analysed in Solanum lycopersicum considering heteroblastic series in a wild type (Wva106) and an antisense mutant, the Pro35S:Slccs52AAS line, and upon drought treatments. All plants were grown in an automated phenotyping platform, PHENOPSIS, adapted to host plants grown in 7 L pots. Key Results: Leaf area, leaflet area and cell number increased with leaf rank until reaching a plateau. In contrast, cell area slightly decreased and endoreduplication did not follow any trend. In the transgenic line, leaf area, leaflet areas and cell number of basal leaves were lower than in the wild type, but higher in upper leaves. Reciprocally, cell area was higher in basal leaves and lower in upper leaves. When scaled up at the whole sympodial unit, all these traits did not differ significantly between the transgenic line and the wild type. In response to drought, leaf area was reduced, with a clear dose effect that was also reported for all size-related traits, including endoreduplication. Conclusions: These results provide evidence that all leaflets have the same cellular phenotypes as the leaf they belong to. Consistent with results reported for simple leaves, they show that cell number rather than cell size determines the final leaf areas and that endoreduplication can be uncoupled from leaf and cell sizes. Finally, they re-question a whole-plant control of cell division and expansion in leaves when the Wva106 and the Pro35S:Slccs52AAS lines are compared.


Assuntos
Folhas de Planta/fisiologia , Solanum lycopersicum/fisiologia , Genes de Plantas/fisiologia , Solanum lycopersicum/anatomia & histologia , Folhas de Planta/anatomia & histologia
6.
J Biol Chem ; 291(12): 6521-33, 2016 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-26801610

RESUMO

The regulation of the GORK (Guard Cell Outward Rectifying) Shaker channel mediating a massive K(+) efflux in Arabidopsis guard cells by the phosphatase AtPP2CA was investigated. Unlike the gork mutant, the atpp2ca mutants displayed a phenotype of reduced transpiration. We found that AtPP2CA interacts physically with GORK and inhibits GORK activity in Xenopus oocytes. Several amino acid substitutions in the AtPP2CA active site, including the dominant interfering G145D mutation, disrupted the GORK-AtPP2CA interaction, meaning that the native conformation of the AtPP2CA active site is required for the GORK-AtPP2CA interaction. Furthermore, two serines in the GORK ankyrin domain that mimic phosphorylation (Ser to Glu) or dephosphorylation (Ser to Ala) were mutated. Mutations mimicking phosphorylation led to a significant increase in GORK activity, whereas mutations mimicking dephosphorylation had no effect on GORK. In Xenopus oocytes, the interaction of AtPP2CA with "phosphorylated" or "dephosphorylated" GORK systematically led to inhibition of the channel to the same baseline level. Single-channel recordings indicated that the GORK S722E mutation increases the open probability of the channel in the absence, but not in the presence, of AtPP2CA. The dephosphorylation-independent inactivation mechanism of GORK by AtPP2CA is discussed in relation with well known conformational changes in animal Shaker-like channels that lead to channel opening and closing. In plants, PP2C activity would control the stomatal aperture by regulating both GORK and SLAC1, the two main channels required for stomatal closure.


Assuntos
Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiologia , Arabidopsis/enzimologia , Fosfoproteínas Fosfatases/fisiologia , Canais de Potássio/metabolismo , Sequência de Aminoácidos , Animais , Células Cultivadas , Genes Dominantes , Potenciais da Membrana , Mimetismo Molecular , Dados de Sequência Molecular , Mutação de Sentido Incorreto , Fosforilação , Transpiração Vegetal , Domínios e Motivos de Interação entre Proteínas , Processamento de Proteína Pós-Traducional , Técnicas do Sistema de Duplo-Híbrido , Xenopus laevis
7.
Plant Cell ; 24(2): 676-91, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22319053

RESUMO

RNA editing plays an important role in organelle gene expression in various organisms, including flowering plants, changing the nucleotide information at precise sites. Here, we present evidence that the maize (Zea mays) nuclear gene Pentatricopeptide repeat 2263 (PPR2263) encoding a DYW domain-containing PPR protein is required for RNA editing in the mitochondrial NADH dehydrogenase5 (nad5) and cytochrome b (cob) transcripts at the nad5-1550 and cob-908 sites, respectively. Its putative ortholog, MITOCHONDRIAL EDITING FACTOR29, fulfills the same role in Arabidopsis thaliana. Both the maize and the Arabidopsis proteins show preferential localization to mitochondria but are also detected in chloroplasts. In maize, the corresponding ppr2263 mutation causes growth defects in kernels and seedlings. Embryo and endosperm growth are reduced, leading to the production of small but viable kernels. Mutant plants have narrower and shorter leaves, exhibit a strong delay in flowering time, and generally do not reach sexual maturity. Whereas mutant chloroplasts do not have major defects, mutant mitochondria lack complex III and are characterized by a compromised ultrastructure, increased transcript levels, and the induction of alternative oxidase. The results suggest that mitochondrial RNA editing at the cob-908 site is necessary for mitochondrion biogenesis, cell division, and plant growth in maize.


Assuntos
Citocromos b/genética , Proteínas Mitocondriais/genética , NADH Desidrogenase/genética , Proteínas de Plantas/metabolismo , Edição de RNA , Zea mays/crescimento & desenvolvimento , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Cloroplastos/enzimologia , Regulação da Expressão Gênica de Plantas , Microscopia Eletrônica de Transmissão , Mitocôndrias/enzimologia , Mitocôndrias/ultraestrutura , Proteínas Mitocondriais/metabolismo , Dados de Sequência Molecular , Mutagênese Insercional , Oxirredutases/metabolismo , Fenótipo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , RNA de Plantas/genética , Sementes/crescimento & desenvolvimento , Zea mays/genética , Zea mays/metabolismo
8.
J Exp Bot ; 65(22): 6457-69, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25246443

RESUMO

How genetic factors control plant performance under stressful environmental conditions is a central question in ecology and for crop breeding. A multivariate framework was developed to examine the genetic architecture of performance-related traits in response to interacting environmental stresses. Ecophysiological and life history traits were quantified in the Arabidopsis thaliana Ler × Cvi mapping population exposed to constant soil water deficit and high air temperature. The plasticity of the genetic variance-covariance matrix (G-matrix) was examined using mixed-effects models after regression into principal components. Quantitative trait locus (QTL) analysis was performed on the predictors of genotype effects and genotype by environment interactions (G × E). Three QTLs previously identified for flowering time had antagonistic G × E effects on carbon acquisition and the other traits (phenology, growth, leaf morphology, and transpiration). This resulted in a size-dependent response of water use efficiency (WUE) to high temperature but not soil water deficit, indicating that most of the plasticity of carbon acquisition and WUE to temperature is controlled by the loci that control variation of development, size, growth, and transpiration. A fourth QTL, MSAT2.22, controlled the response of carbon acquisition to specific combinations of watering and temperature irrespective of plant size and development, growth, and transpiration rate, which resulted in size-independent plasticity of WUE. These findings highlight how the strategies to optimize plant performance may differ in response to water deficit and high temperature (or their combination), and how different G × E effects could be targeted to improve plant tolerance to these stresses.


Assuntos
Adaptação Fisiológica/genética , Arabidopsis/genética , Arabidopsis/fisiologia , Temperatura , Água , Alelos , Ecótipo , Meio Ambiente , Análise Fatorial , Interação Gene-Ambiente , Genótipo , Modelos Biológicos , Análise Multivariada , Fenótipo , Desenvolvimento Vegetal/genética , Análise de Componente Principal , Locos de Características Quantitativas/genética
9.
Plant Physiol ; 156(2): 803-15, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21474437

RESUMO

Leaf expansion is the central process by which plants colonize space, allowing energy capture and carbon acquisition. Water and carbon emerge as main limiting factors of leaf expansion, but the literature remains controversial about their respective contributions. Here, we tested the hypothesis that the importance of hydraulics and metabolics is organized according to both dark/light fluctuations and leaf ontogeny. For this purpose, we established the developmental pattern of individual leaf expansion during days and nights in the model plant Arabidopsis (Arabidopsis thaliana). Under control conditions, decreases in leaf expansion were observed at night immediately after emergence, when starch reserves were lowest. These nocturnal decreases were strongly exaggerated in a set of starch mutants, consistent with an early carbon limitation. However, low-light treatment of wild-type plants had no influence on these early decreases, implying that expansion can be uncoupled from changes in carbon availability. From 4 d after leaf emergence onward, decreases of leaf expansion were observed in the daytime. Using mutants impaired in stomatal control of transpiration as well as plants grown under soil water deficit or high air humidity, we gathered evidence that these diurnal decreases were the signature of a hydraulic limitation that gradually set up as the leaf developed. Changes in leaf turgor were consistent with this pattern. It is concluded that during the course of leaf ontogeny, the predominant control of leaf expansion switches from metabolics to hydraulics. We suggest that the leaf is better armed to buffer variations in the former than in the latter.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Arabidopsis/fisiologia , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Água/química , Ar , Carboidratos/análise , Carbono/metabolismo , Ritmo Circadiano/fisiologia , Escuridão , Desidratação , Umidade , Mutação/genética , Fenótipo , Folhas de Planta/metabolismo , Estômatos de Plantas , Solo , Amido/metabolismo
10.
Plant Physiol ; 157(4): 2044-55, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22010109

RESUMO

Enormous progress has been achieved understanding the molecular mechanisms regulating endoreduplication. By contrast, how this process is coordinated with the cell cycle or cell expansion and contributes to overall growth in multicellular systems remains unclear. A holistic approach was used here to give insight into the functional links between endoreduplication, cell division, cell expansion, and whole growth in the Arabidopsis (Arabidopsis thaliana) leaf. Correlative analyses, quantitative genetics, and structural equation modeling were applied to a large data set issued from the multiscale phenotyping of 200 genotypes, including both genetically modified lines and recombinant inbred lines. All results support the conclusion that endoreduplication in leaf cells could be controlled by leaf growth itself. More generally, leaf growth could act as a "hub" that drives cell division, cell expansion, and endoreduplication in parallel. In many cases, this strategy allows compensations that stabilize leaf area even when one of the underlying cellular processes is limiting.


Assuntos
Arabidopsis/citologia , Divisão Celular , Crescimento Celular , Duplicação Gênica , Folhas de Planta/citologia , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Mapeamento Cromossômico , Genótipo , Análise Multivariada , Mutação , Fenótipo , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , Ploidias , Locos de Características Quantitativas , Reação em Cadeia da Polimerase Via Transcriptase Reversa
11.
Plant Cell Environ ; 35(9): 1631-46, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22471732

RESUMO

Light and soil water content affect leaf surface area expansion through modifications in epidermal cell numbers and area, while effects on leaf thickness and mesophyll cell volumes are far less documented. Here, three-dimensional imaging was applied in a study of Arabidopsis thaliana leaf growth to determine leaf thickness and the cellular organization of mesophyll tissues under moderate soil water deficit and two cumulative light conditions. In contrast to surface area, thickness was highly conserved in response to water deficit under both low and high cumulative light regimes. Unlike epidermal and palisade mesophyll tissues, no reductions in cell number were observed in the spongy mesophyll; cells had rather changed in volume and shape. Furthermore, leaf features of a selection of genotypes affected in leaf functioning were analysed. The low-starch mutant pgm had very thick leaves because of unusually large palisade mesophyll cells, together with high levels of photosynthesis and stomatal conductance. By means of an open stomata mutant and a 9-cis-epoxycarotenoid dioxygenase overexpressor, it was shown that stomatal conductance does not necessarily have a major impact on leaf dimensions and cellular organization, pointing to additional mechanisms for the control of CO(2) diffusion under high and low stomatal conductance, respectively.


Assuntos
Arabidopsis/anatomia & histologia , Arabidopsis/crescimento & desenvolvimento , Meio Ambiente , Imageamento Tridimensional/métodos , Folhas de Planta/anatomia & histologia , Folhas de Planta/crescimento & desenvolvimento , Arabidopsis/citologia , Arabidopsis/genética , Fenômenos Biomecânicos/efeitos da radiação , Contagem de Células , Forma Celular/efeitos da radiação , Tamanho Celular/efeitos da radiação , Genótipo , Umidade , Luz , Células do Mesofilo/citologia , Células do Mesofilo/efeitos da radiação , Mutação/genética , Especificidade de Órgãos/efeitos da radiação , Fotossíntese/efeitos da radiação , Folhas de Planta/genética , Folhas de Planta/efeitos da radiação , Estômatos de Plantas/anatomia & histologia , Estômatos de Plantas/fisiologia , Estômatos de Plantas/efeitos da radiação , Solo , Amido/metabolismo , Água
12.
BMC Plant Biol ; 11: 77, 2011 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-21554668

RESUMO

BACKGROUND: Renewed interest in plant×environment interactions has risen in the post-genomic era. In this context, high-throughput phenotyping platforms have been developed to create reproducible environmental scenarios in which the phenotypic responses of multiple genotypes can be analysed in a reproducible way. These platforms benefit hugely from the development of suitable databases for storage, sharing and analysis of the large amount of data collected. In the model plant Arabidopsis thaliana, most databases available to the scientific community contain data related to genetic and molecular biology and are characterised by an inadequacy in the description of plant developmental stages and experimental metadata such as environmental conditions. Our goal was to develop a comprehensive information system for sharing of the data collected in PHENOPSIS, an automated platform for Arabidopsis thaliana phenotyping, with the scientific community. DESCRIPTION: PHENOPSIS DB is a publicly available (URL: http://bioweb.supagro.inra.fr/phenopsis/) information system developed for storage, browsing and sharing of online data generated by the PHENOPSIS platform and offline data collected by experimenters and experimental metadata. It provides modules coupled to a Web interface for (i) the visualisation of environmental data of an experiment, (ii) the visualisation and statistical analysis of phenotypic data, and (iii) the analysis of Arabidopsis thaliana plant images. CONCLUSIONS: Firstly, data stored in the PHENOPSIS DB are of interest to the Arabidopsis thaliana community, particularly in allowing phenotypic meta-analyses directly linked to environmental conditions on which publications are still scarce. Secondly, data or image analysis modules can be downloaded from the Web interface for direct usage or as the basis for modifications according to new requirements. Finally, the structure of PHENOPSIS DB provides a useful template for the development of other similar databases related to genotype×environment interactions.


Assuntos
Arabidopsis/genética , Bases de Dados Factuais , Processamento de Imagem Assistida por Computador , Interface Usuário-Computador , Algoritmos , Arabidopsis/crescimento & desenvolvimento , Meio Ambiente , Genótipo , Internet , Fenótipo , Folhas de Planta/anatomia & histologia , Folhas de Planta/crescimento & desenvolvimento
13.
Plant Physiol ; 154(1): 357-72, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20631317

RESUMO

Growth and carbon (C) fluxes are severely altered in plants exposed to soil water deficit. Correspondingly, it has been suggested that plants under water deficit suffer from C shortage. In this study, we test this hypothesis in Arabidopsis (Arabidopsis thaliana) by providing an overview of the responses of growth, C balance, metabolites, enzymes of the central metabolism, and a set of sugar-responsive genes to a sustained soil water deficit. The results show that under drought, rosette relative expansion rate is decreased more than photosynthesis, leading to a more positive C balance, while root growth is promoted. Several soluble metabolites accumulate in response to soil water deficit, with K(+) and organic acids as the main contributors to osmotic adjustment. Osmotic adjustment costs only a small percentage of the daily photosynthetic C fixation. All C metabolites measured (not only starch and sugars but also organic acids and amino acids) show a diurnal turnover that often increased under water deficit, suggesting that these metabolites are readily available for being metabolized in situ or exported to roots. On the basis of 30 enzyme activities, no in-depth reprogramming of C metabolism was observed. Water deficit induces a shift of the expression level of a set of sugar-responsive genes that is indicative of increased, rather than decreased, C availability. These results converge to show that the differential impact of soil water deficit on photosynthesis and rosette expansion results in an increased availability of C for the roots, an increased turnover of C metabolites, and a low-cost C-based osmotic adjustment, and these responses are performed without major reformatting of the primary metabolism machinery.


Assuntos
Aclimatação/efeitos dos fármacos , Arabidopsis/enzimologia , Arabidopsis/crescimento & desenvolvimento , Carbono/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Água/farmacologia , Aclimatação/genética , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Biomassa , Metabolismo dos Carboidratos/efeitos dos fármacos , Metabolismo dos Carboidratos/genética , Ácidos Carboxílicos/metabolismo , Análise Multivariada , Osmose/efeitos dos fármacos , Fotoperíodo , Fotossíntese/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Potássio/metabolismo , Solubilidade/efeitos dos fármacos , Amido/metabolismo
14.
Sci Rep ; 11(1): 24103, 2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34916537

RESUMO

Changes in plant abiotic environments may alter plant virus epidemiological traits, but how such changes actually affect their quantitative relationships is poorly understood. Here, we investigated the effects of water deficit on Cauliflower mosaic virus (CaMV) traits (virulence, accumulation, and vectored-transmission rate) in 24 natural Arabidopsis thaliana accessions grown under strictly controlled environmental conditions. CaMV virulence increased significantly in response to water deficit during vegetative growth in all A. thaliana accessions, while viral transmission by aphids and within-host accumulation were significantly altered in only a few. Under well-watered conditions, CaMV accumulation was correlated positively with CaMV transmission by aphids, while under water deficit, this relationship was reversed. Hence, under water deficit, high CaMV accumulation did not predispose to increased horizontal transmission. No other significant relationship between viral traits could be detected. Across accessions, significant relationships between climate at collection sites and viral traits were detected but require further investigation. Interactions between epidemiological traits and their alteration under abiotic stresses must be accounted for when modelling plant virus epidemiology under scenarios of climate change.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Arabidopsis/virologia , Caulimovirus/patogenicidade , Mudança Climática , Doenças das Plantas/virologia , Estresse Fisiológico , Virulência , Água , Animais , Afídeos/fisiologia , Afídeos/virologia , Arabidopsis/parasitologia , Meio Ambiente
15.
Plant Cell Environ ; 33(11): 1875-87, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20545881

RESUMO

Variation in leaf development caused by water deficit was analysed in 120 recombinant inbred lines derived from two Arabidopsis thaliana accessions, Ler and An-1. Main effect quantitative trait loci (QTLs) and QTLs in epistatic interactions were mapped for the responses of rosette area, leaf number and leaf 6 area to water deficit. An epistatic interaction between two QTLs affected the response of whole rosette area and individual leaf area but only with effects in well-watered condition. A second epistatic interaction between two QTLs controlled the response of rosette area and leaf number with specific effects in the water deficit condition. These effects were validated by generating and phenotyping new appropriate lines. Accordingly, a low reduction of rosette area was observed for lines with a specific allelic combination at the two interacting QTLs. This low reduction was accompanied by an increase in leaf number with a lengthening of the vegetative phase and a low reduction in individual leaf area with low reductions in epidermal cell area and number. Statistical analyses suggested that responses of epidermal cell area and number to water deficit in individual leaves were partly caused by delay in flowering time and reduction in leaf emergence rate, respectively.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Folhas de Planta/crescimento & desenvolvimento , Locos de Características Quantitativas , Água/metabolismo , Arabidopsis/genética , Cruzamento , Mapeamento Cromossômico , Secas , Epistasia Genética , Fenótipo , Folhas de Planta/genética
16.
Plants (Basel) ; 8(10)2019 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-31614737

RESUMO

It is clearly established that there is not a unique response to soil water deficit but that there are as many responses as soil water deficit characteristics: Drought intensity, drought duration, and drought position during plant cycle. For a same soil water deficit, responses can also differ on plant genotype within a same species. In spite of this variability, at least for leaf production and expansion processes, robust tendencies can be extracted from the literature when similar watering regimes are compared. Here, we present response curves and multi-scale dynamics analyses established on tomato plants exposed to different soil water deficit treatments. Results reinforce the trends already observed for other species: Reduction in plant leaf biomass under water stress was due to reduction in individual leaf biomass and areas whereas leaf production and specific leaf area were not affected. The dynamics of leaf expansion was modified both at the leaf and cell scales. Cell division and expansion were reduced by drought treatments as well as the endoreduplication process. Combining response curves analyses together with dynamic analyses of tomato compound leaf growth at different scales not only corroborate results on simple leaf responses to drought but also increases our knowledge on the cellular mechanisms behind leaf growth plasticity.

17.
Bio Protoc ; 8(4): e2739, 2018 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-34179267

RESUMO

High-throughput phenotyping of plant traits is a powerful tool to further our understanding of plant growth and its underlying physiological, molecular, and genetic determinisms. This protocol describes the methodology of a standard phenotyping experiment in PHENOPSIS automated platform, which was engineered in INRA-LEPSE (https://www6.montpellier.inra.fr/lepse) and custom-made by Optimalog company. The seminal method was published by Granier et al. (2006). The platform is used to explore and test various ecophysiological hypotheses (Tisné et al., 2010; Baerenfaller et al., 2012; Vile et al., 2012; Bac-Molenaar et al., 2015; Rymaszewski et al., 2017). Here, the focus concerns the preparation and management of experiments, as well as measurements of growth-related traits (e.g., projected rosette area, total leaf area and growth rate), water status-related traits (e.g., leaf dry matter content and relative water content), and plant architecture-related traits (e.g., stomatal density and index and lamina/petiole ratio). Briefly, a completely randomized (block) design is set up in the growth chamber. Next, the substrate is prepared, its initial water content is measured and pots are filled. Seeds are sown onto the soil surface and germinated prior to the experiment. After germination, soil watering and image (visible, infra-red, fluorescence) acquisition are planned by the user and performed by the automaton. Destructive measurements may be performed during the experiment. Data extraction from images and estimation of growth-related trait values involves semi-automated procedures and statistical processing.

18.
Front Plant Sci ; 9: 703, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29881396

RESUMO

Plants suffer from a broad range of abiotic and biotic stresses that do not occur in isolation but often simultaneously. Productivity of natural and agricultural systems is frequently constrained by water limitation, and the frequency and duration of drought periods will likely increase due to global climate change. In addition, phytoviruses represent highly prevalent biotic threat in wild and cultivated plant species. Several hints support a modification of epidemiological parameters of plant viruses in response to environmental changes but a clear quantification of plant-virus interactions under abiotic stresses is still lacking. Here we report the effects of a water deficit on epidemiological parameters of Cauliflower mosaic virus (CaMV), a non-circulative virus transmitted by aphid vectors, in nine natural accessions of Arabidopsis thaliana with known contrasted responses to water deficit. Plant growth-related traits and virus epidemiological parameters were evaluated in PHENOPSIS, an automated high throughput phenotyping platform. Water deficit had contrasted effects on CaMV transmission rate and viral load among A. thaliana accessions. Under well-watered conditions, transmission rate tended to increase with viral load and with CaMV virulence across accessions. Under water deficit, transmission rate and virulence were negatively correlated. Changes in the rate of transmission under water deficit were not related to changes in viral load. Our results support the idea that optimal virulence of a given virus, as hypothesized under the transmission-virulence trade-off, is highly dependent on the environment and growth traits of the host.

19.
Plant Methods ; 13: 98, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29151844

RESUMO

BACKGROUND: Plant science uses increasing amounts of phenotypic data to unravel the complex interactions between biological systems and their variable environments. Originally, phenotyping approaches were limited by manual, often destructive operations, causing large errors. Plant imaging emerged as a viable alternative allowing non-invasive and automated data acquisition. Several procedures based on image analysis were developed to monitor leaf growth as a major phenotyping target. However, in most proposals, a time-consuming parameterization of the analysis pipeline is required to handle variable conditions between images, particularly in the field due to unstable light and interferences with soil surface or weeds. To cope with these difficulties, we developed a low-cost, 2D imaging method, hereafter called PYM. The method is based on plant leaf ability to absorb blue light while reflecting infrared wavelengths. PYM consists of a Raspberry Pi computer equipped with an infrared camera and a blue filter and is associated with scripts that compute projected leaf area. This new method was tested on diverse species placed in contrasting conditions. Application to field conditions was evaluated on lettuces grown under photovoltaic panels. The objective was to look for possible acclimation of leaf expansion under photovoltaic panels to optimise the use of solar radiation per unit soil area. RESULTS: The new PYM device proved to be efficient and accurate for screening leaf area of various species in wide ranges of environments. In the most challenging conditions that we tested, error on plant leaf area was reduced to 5% using PYM compared to 100% when using a recently published method. A high-throughput phenotyping cart, holding 6 chained PYM devices, was designed to capture up to 2000 pictures of field-grown lettuce plants in less than 2 h. Automated analysis of image stacks of individual plants over their growth cycles revealed unexpected differences in leaf expansion rate between lettuces rows depending on their position below or between the photovoltaic panels. CONCLUSIONS: The imaging device described here has several benefits, such as affordability, low cost, reliability and flexibility for online analysis and storage. It should be easily appropriated and customized to meet the needs of various users.

20.
Funct Plant Biol ; 44(1): 35-45, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32480544

RESUMO

Following the recent development of high-throughput phenotyping platforms for plant research, the number of individual plants grown together in a same experiment has raised, sometimes at the expense of pot size. However, root restriction in excessively small pots affects plant growth and carbon partitioning, and may interact with other stresses targeted in these experiments. In work reported here, we investigated the interactive effects of pot size and soil water deficit on multiple growth-related traits from the cellular to the whole-plant scale in oilseed rape (Brassica napus L.). The effects of pot size on responses to water deficit and allometric relationships revealed strong, multilevel interactions between pot size and watering regime. Notably, water deficit increased the root:shoot ratio in large pots, but not in small pots. At the cellular scale, water deficit decreased epidermal leaf cell area in large pots, but not in small pots. These results were consistent with changes in the level of endoreduplication factor in leaf cells. Our study illustrates the disturbing interaction of pot size with water deficit and raises the need to carefully consider this factor in the frame of the current development of high-throughput phenotyping experiments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA