RESUMO
Studies about the duration of the humoral and cellular response following the bivalent booster administration are still scarce. We aimed at assessing the humoral and cellular response in a cohort of healthcare workers that received this booster. Blood samples were collected before the administration of the bivalent booster from Pfizer-BioNTech and after 14, 28, 90, and 180 days. Neutralizing antibodies against either the D614G strain, the delta variant, the BA.5 variant, or the XBB.1.5 subvariant were measured. The cellular response was assessed by measurement of the release of interferon gamma from T cells in response to an in vitro SARS-CoV-2 stimulation. A substantial waning of neutralizing antibodies was observed after 6 months (23.1-fold decrease), especially considering the XBB.1.5 subvariant. The estimated T1/2 of neutralizing antibodies was 16.1 days (95% CI = 10.2-38.4 days). Although most participants still present a robust cellular response after 6 months (i.e., 95%), a significant decrease was also observed compared to the peak response (0.95 vs. 0.41 UI/L, p = 0.0083). A significant waning of the humoral and cellular response was observed after 6 months. These data can also help competent national authorities in their recommendation regarding the administration of an additional booster.
Assuntos
Vacina BNT162 , Terapias Complementares , Humanos , Imunidade Celular , Anticorpos Neutralizantes , Pessoal de SaúdeRESUMO
Evidence about the long-term persistence of the booster-mediated immunity against Omicron is mandatory for pandemic management and deployment of vaccination strategies. A total of 155 healthcare professionals (104 COVID-19 naive and 51 with a history of SARS-CoV-2 infection) received a homologous BNT162b2 booster. Binding antibodies against the spike protein and neutralizing antibodies against Omicron were measured at several time points before and up to 6 months after the booster. Geometric mean titers of measured antibodies were correlated to vaccine efficacy (VE) against symptomatic disease. Compared to the highest response, a significant 10.2- and 11.5-fold decrease in neutralizing titers was observed after 6 months in participants with and without history of SARS-CoV-2 infection. A corresponding 2.5- and 2.9-fold decrease in binding antibodies was observed. The estimated T1/2 of neutralizing antibodies in participants with and without history of SARS-CoV-2 infection was 42 (95% confidence interval [CI]: 25-137) and 36 days (95% CI: 25-65). Estimated T1/2 were longer for binding antibodies: 168 (95% CI: 116-303) and 139 days (95% CI: 113-180), respectively. Both binding and neutralizing antibodies were strongly correlated to VE (r = 0.83 and 0.89). However, binding and neutralizing antibodies were modestly correlated, and a high proportion of subjects (36.7%) with high binding antibody titers (i.e., >8434 BAU/ml) did not have neutralizing activity. A considerable decay of the humoral response was observed 6 months after the booster, and was strongly correlated with VE. Our study also shows that commercial assays available in clinical laboratories might require adaptation to better predict neutralization in the Omicron era.
Assuntos
COVID-19 , Vacinas , Humanos , Anticorpos Neutralizantes , Vacina BNT162 , COVID-19/prevenção & controle , SARS-CoV-2 , Anticorpos AntiviraisRESUMO
RESEARCH QUESTION: Are glioma-associated oncogene homolog 1, 2, and 3 (GLI1, 2, and 3) and protein patched homolog 1 (PTCH1) specific markers for precursor theca cells in human ovaries as in mouse ovaries? DESIGN: To study the GDF9-HH-GLI pathway and assess whether GLI1 and 3 and PTCH1 are specific markers for precursor theca cells in the human ovary, growth differentiation factor 9 (GDF9), Indian Hedgehog (IHH), Desert Hedgehog (DHH), Sonic Hedgehog (SHH), PTCH1 and GLI1, 2 and 3 were investigated in fetal (n=9), prepubertal (n=9), reproductive-age (n=15), and postmenopausal (n=8) human ovarian tissue. Immunohistochemistry against GDF9, IHH, DHH, SHH, PTCH1, GLI1, GLI2, and GLI3 was performed on human ovarian tissue sections fixed in 4% formaldehyde and embedded in paraffin. Western blotting was carried out on extracted proteins from the same samples used in the previous step to prove the antibodies' specificity. The quantitative real-time polymerase chain reaction was performed to identify mRNA levels for Gdf9, Ihh, Gli1, Gli2, and Gli3 in menopausal ovaries. RESULTS: Our results showed that, in contrast to mice, all studied proteins were expressed in primordial follicles of fetal, prepubertal, and reproductive-age human ovaries and stromal cells of reproductive-age and postmenopausal ovaries. Intriguingly, Gdf9, Ihh, and Gli3 mRNA, but not Gli1 and 2, was detected in postmenopausal ovaries. Moreover, GLI1, GLI3, and PTCH1 are not limited to a specific population of cells. They were spread throughout the organ, which means they are not specific markers for precursor theca cells in human ovaries. CONCLUSION: These results could provide a basis for understanding how this pathway modulates follicle development and ovarian cell steroidogenesis in human ovaries.
Assuntos
Fator 9 de Diferenciação de Crescimento/genética , Folículo Ovariano/crescimento & desenvolvimento , Receptor Patched-1/genética , Proteína GLI1 em Dedos de Zinco/genética , Animais , Feminino , Feto/metabolismo , Proteínas Hedgehog/genética , Humanos , Camundongos , Proteínas do Tecido Nervoso/genética , Folículo Ovariano/metabolismo , Ovário/crescimento & desenvolvimento , Ovário/metabolismo , Pós-Menopausa/genética , Pós-Menopausa/metabolismo , RNA Mensageiro/genética , Transdução de Sinais/genética , Proteína Gli3 com Dedos de Zinco/genéticaRESUMO
OBJECTIVES: An increase evasion of the SARS-CoV-2 virus toward vaccination strategies and natural immunity has been rapidly described notably because of the mutations in the spike receptor binding domain and the N-terminal domain. METHODS: Participants of the CRO-VAX HCP study who received the bivalent booster were followed up at 6 months. A pseudovirus-neutralization test was used to assess the neutralization potency of antibodies against D614G, Delta, BA.1, BA.5, XBB.1.5, BA.2.86, FL.1.5.1, and JN-1. RESULTS: The neutralizing capacity of antibodies against the Omicron variant or its subvariants was significantly reduced compared with D614G and Delta (P <0.0001). The lowest neutralizing response that was observed with JN-1 (geometric mean titers [GMTs] = 22.1) was also significantly lower than XBB.1.5 (GMT = 29.5, P <0.0001), BA.2.86 (GMT = 29.6, P <0.0001), and FL.1.5.1 (GMT = 25.2, P <0.0001). Participants who contracted a breakthrough infection because of XBB.1.5 had significantly higher neutralizing antibodies against all variants than uninfected participants, especially against the Omicron variant and its subvariants. CONCLUSIONS: Our results confirm that JN.1 is one of the most immune-evading variants to date and that the BA.2.86 subvariant did not show an increased immunity escape compared with XBB.1.5. The stronger response in breakthrough infection cases with the Omicron variant and its subvariants supports the need to use vaccine antigens that target circulating variants.
Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Vacina BNT162 , COVID-19 , Imunização Secundária , SARS-CoV-2 , Humanos , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , COVID-19/prevenção & controle , COVID-19/imunologia , SARS-CoV-2/imunologia , Masculino , Feminino , Vacina BNT162/imunologia , Vacina BNT162/administração & dosagem , Adulto , Pessoa de Meia-Idade , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/administração & dosagem , Glicoproteína da Espícula de Coronavírus/imunologia , Testes de NeutralizaçãoRESUMO
Introduction: Some studies suggest that the monovalent mRNA-1273 vaccine is more effective than BNT162b2 in producing higher levels of antibodies. However, limited data are available, and the methods used are not directly comparable. Material and methods: Blood samples were obtained before the booster (third dose) and after 14, 90, and 180 days in two similar cohorts who received the original BNT162b2 or mRNA-1273 vaccine designed to target wild type SARS-CoV-2. The aim of our study is to compare their effectiveness by assessing the levels of binding and neutralizing antibodies specifically against each of the BA.1 variant, BA.5 variant, and the XBB.1.5 subvariant. Results: Once the peak was reached after two weeks, a drastic decline in binding and neutralizing antibodies was observed up to 6 months after the homologous booster administration. The humoral response was however more sustained with the mRNA-1273 booster, with half-lives of 167, 55, and 48 days for binding, BA.1, and BA.5 neutralizing antibodies compared to 144, 30, and 29 days for the BNT162b2 booster, respectively. Compared to the BA.1 variant, the neutralizing capacity was significantly decreased at 6 months with the BA.5 variant (fold-decrease: 1.67 to 3.20) and the XBB.1.5. subvariant (fold-decrease: 2.86 to 5.48). Conclusion: Although the decrease in the humoral response was observed with both mRNA vaccines over time, a more sustained response was observed with the mRNA-1273 vaccine. Moreover, the emergence of Omicron-based variants causes a reduced neutralizing capacity, notably with the XBB.1.5. subvariant. The administration of subsequent boosters would therefore be needed to restore a sufficiently high neutralizing response.
RESUMO
The diagnostic of SARS-CoV-2 infection relies on reverse transcriptase polymerase chain reactions (RT-PCRs) performed on nasopharyngeal (NP) swabs. Nevertheless, false-negative results can be obtained with inadequate sampling procedures, making the use of other biological matrices worthy of investigation. This study aims to evaluate the kinetics of serum N antigens in severe and non-severe patients and compare the clinical performance of serum antigenic assays with NP RT-PCR. Ninety patients were included in the study and monitored for several days. Disease severity was determined according to the WHO clinical progression scale. Serum N antigen levels were measured with a chemiluminescent assay (CLIA) and the Single Molecular Array (Simoa) assay. Viremia thresholds for severity were determined and proposed. In severe patients, the peak antigen response was observed 7 days after the onset of symptoms, followed by a decline. No real peak response was observed in non-severe patients. Severity thresholds for the Simoa and the CLIA provided positive likelihood ratios of 30.0 and 10.9 for the timeframe between day 2 and day 14, respectively. Sensitive detection of N antigens in serum may thus provide a valuable new marker for COVID-19 diagnosis and evaluation of disease severity. When assessed during the first 2 weeks since the onset of symptoms, it may help in identifying patients at risk of developing severe COVID-19 to optimize better intensive care utilization.
Assuntos
COVID-19 , COVID-19/diagnóstico , Teste para COVID-19 , Humanos , Testes Imunológicos , SARS-CoV-2 , Sensibilidade e Especificidade , Índice de Gravidade de DoençaRESUMO
Background: Neutrophil extracellular traps' (NETs') formation is a mechanism of defense that neutrophils deploy as an alternative to phagocytosis, to constrain the spread of microorganisms. Aim: The aim was to evaluate biomarkers of NETs' formation in a patient cohort admitted to intensive care unit (ICU) due to infection. Methods: Forty-six septic shock patients, 22 critical COVID-19 patients and 48 matched control subjects were recruited. Intact nucleosomes containing histone 3.1 (Nu.H3.1), or citrullinated histone H3R8 (Nu.Cit-H3R8), free citrullinated histone (Cit-H3), neutrophil elastase (NE) and myeloperoxidase (MPO) were measured. Results: Significant differences in Nu.H3.1 and NE levels were observed between septic shock and critical COVID-19 subjects as well as with controls (p-values < 0.05). The normalization of nucleosome levels according to the neutrophil count improved the discrimination between septic shock and critical COVID-19 patients. The ratio of Nu.Cit-H3R8 to Nu.H3.1 allowed the determination of nucleosome citrullination degree, presumably by PAD4. Conclusions: H3.1 and Cit-H3R8 nucleosomes appear to be interesting markers of global cell death and neutrophil activation when combined. Nu.H3.1 permits the evaluation of disease severity and differs between septic shock and critical COVID-19 patients, reflecting two distinct potential pathological processes in these conditions.
Assuntos
COVID-19 , Armadilhas Extracelulares , Choque Séptico , Biomarcadores/metabolismo , Armadilhas Extracelulares/metabolismo , Histonas/metabolismo , Humanos , Neutrófilos/metabolismo , Nucleossomos/metabolismo , Choque Séptico/metabolismoRESUMO
BACKGROUND: Little is known about potential confounding factors influencing the humoral response in individuals having received the BNT162b2 vaccine. METHODS: Blood samples from 231 subjects were collected before and 14, 28, and 42 days following coronavirus disease 2019 (COVID-19) vaccination with BNT162b2. Anti-spike receptor-binding-domain protein (anti-Spike/RBD) immunoglobulin G (IgG) antibodies were measured at each time-point. Impact of age, sex, childbearing age status, hormonal therapy, blood group, body mass index and past-history of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection were assessed by multivariable analyses. RESULTS AND CONCLUSIONS: In naïve subjects, the level of anti-Spike/RBD antibodies gradually increased following administration of the first dose to reach the maximal response at day 28 and then plateauing at day 42. In vaccinated subjects with previous SARS-CoV-2 infection, the plateau was reached sooner (i.e., at day 14). In the naïve population, age had a significant negative impact on anti-Spike/RBD titers at days 14 and 28 while lower levels were observed for males at day 42, when corrected for other confounding factors. Body mass index (BMI) as well as B and AB blood groups had a significant impact in various subgroups on the early response at day 14 but no longer after. No significant confounding factors were highlighted in the previously infected group.
RESUMO
The evaluation of the neutralizing capacity of anti-SARS-CoV-2 antibodies is important because they represent real protective immunity. In this study we aimed to measure and compare the neutralizing antibodies (NAbs) in COVID-19 patients and in vaccinated individuals. One-hundred and fifty long-term samples from 75 COVID-19 patients were analyzed with a surrogate virus neutralization test (sVNT) and compared to six different SARS-CoV-2 serology assays. The agreement between the sVNT and pseudovirus VNT (pVNT) results was found to be excellent (i.e., 97.2%). The NAb response was also assessed in 90 individuals who had received the complete dose regimen of BNT162b2. In COVID-19 patients, a stronger response was observed in moderate-severe versus mild patients (p-value = 0.0006). A slow decay in NAbs was noted in samples for up to 300 days after diagnosis, especially in moderate-severe patients (r = -0.35, p-value = 0.03). In the vaccinated population, 83.3% of COVID-19-naive individuals had positive NAbs 14 days after the first dose and all were positive 7 days after the second dose, i.e., at day 28. In previously infected individuals, all were already positive for NAbs at day 14. At each time point, a stronger response was observed for previously infected individuals (p-value < 0.05). The NAb response remained stable for up to 56 days in all participants. Vaccinated participants had significantly higher NAb titers compared to COVID patients. In previously infected vaccine recipients, one dose might be sufficient to generate sufficient neutralizing antibodies.
Assuntos
Anticorpos Neutralizantes/imunologia , Vacinas contra COVID-19/imunologia , COVID-19/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Anticorpos Antivirais/sangue , Vacina BNT162 , Teste Sorológico para COVID-19 , Vacinas contra COVID-19/administração & dosagem , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Testes de Neutralização , SARS-CoV-2/imunologia , Testes Sorológicos , Adulto JovemRESUMO
Data about the long-term duration of antibodies after SARS-CoV-2 vaccination are still scarce and are important to design vaccination strategies. In this study, 231 healthcare professionals received the two-dose regimen of BNT162b2. Of these, 158 were seronegative and 73 were seropositive at baseline. Samples were collected at several time points. The neutralizing antibodies (NAbs) and antibodies against the nucleocapsid and the spike protein of SARS-CoV-2 were measured. At day 180, a significant antibody decline was observed in seronegative (-55.4% with total antibody assay; -89.6% with IgG assay) and seropositive individuals (-74.8% with total antibody assay; -79.4% with IgG assay). The estimated half-life of IgG from the peak humoral response was 21 days (95% CI: 13-65) in seronegative and 53 days (95% CI: 40-79) in seropositive individuals. The estimated half-life of total antibodies was longer and ranged from 68 days (95% CI: 54-90) to 114 days (95% CI: 87-167) in seropositive and seronegative individuals, respectively. The decline of NAbs was more pronounced (-98.6%) and around 45% of the subjects tested were negative at day 180. Whether this decrease correlates with an equivalent drop in the clinical effectiveness against the virus would require appropriate clinical studies.