Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30.282
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 186(25): 5536-5553.e22, 2023 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-38029747

RESUMO

Mycobacterium tuberculosis (Mtb) causes 1.6 million deaths annually. Active tuberculosis correlates with a neutrophil-driven type I interferon (IFN) signature, but the cellular mechanisms underlying tuberculosis pathogenesis remain poorly understood. We found that interstitial macrophages (IMs) and plasmacytoid dendritic cells (pDCs) are dominant producers of type I IFN during Mtb infection in mice and non-human primates, and pDCs localize near human Mtb granulomas. Depletion of pDCs reduces Mtb burdens, implicating pDCs in tuberculosis pathogenesis. During IFN-driven disease, we observe abundant DNA-containing neutrophil extracellular traps (NETs) described to activate pDCs. Cell-type-specific disruption of the type I IFN receptor suggests that IFNs act on IMs to inhibit Mtb control. Single-cell RNA sequencing (scRNA-seq) indicates that type I IFN-responsive cells are defective in their response to IFNγ, a cytokine critical for Mtb control. We propose that pDC-derived type I IFNs act on IMs to permit bacterial replication, driving further neutrophil recruitment and active tuberculosis disease.


Assuntos
Interferon Tipo I , Tuberculose , Humanos , Camundongos , Animais , Macrófagos/microbiologia , Citocinas , Neutrófilos , Células Dendríticas
2.
Cell ; 186(1): 80-97.e26, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36608661

RESUMO

Glucose is a universal bioenergy source; however, its role in controlling protein interactions is unappreciated, as are its actions during differentiation-associated intracellular glucose elevation. Azido-glucose click chemistry identified glucose binding to a variety of RNA binding proteins (RBPs), including the DDX21 RNA helicase, which was found to be essential for epidermal differentiation. Glucose bound the ATP-binding domain of DDX21, altering protein conformation, inhibiting helicase activity, and dissociating DDX21 dimers. Glucose elevation during differentiation was associated with DDX21 re-localization from the nucleolus to the nucleoplasm where DDX21 assembled into larger protein complexes containing RNA splicing factors. DDX21 localized to specific SCUGSDGC motif in mRNA introns in a glucose-dependent manner and promoted the splicing of key pro-differentiation genes, including GRHL3, KLF4, OVOL1, and RBPJ. These findings uncover a biochemical mechanism of action for glucose in modulating the dimerization and function of an RNA helicase essential for tissue differentiation.


Assuntos
RNA Helicases DEAD-box , Glucose , Queratinócitos , Nucléolo Celular/metabolismo , Núcleo Celular/metabolismo , RNA Helicases DEAD-box/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Glucose/metabolismo , Queratinócitos/citologia , Queratinócitos/metabolismo , Humanos
3.
Cell ; 185(4): 614-629.e21, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35148840

RESUMO

Activation of the innate immune system via pattern recognition receptors (PRRs) is key to generate lasting adaptive immunity. PRRs detect unique chemical patterns associated with invading microorganisms, but whether and how the physical properties of PRR ligands influence the development of the immune response remains unknown. Through the study of fungal mannans, we show that the physical form of PRR ligands dictates the immune response. Soluble mannans are immunosilent in the periphery but elicit a potent pro-inflammatory response in the draining lymph node (dLN). By modulating the physical form of mannans, we developed a formulation that targets both the periphery and the dLN. When combined with viral glycoprotein antigens, this mannan formulation broadens epitope recognition, elicits potent antigen-specific neutralizing antibodies, and confers protection against viral infections of the lung. Thus, the physical properties of microbial ligands determine the outcome of the immune response and can be harnessed for vaccine development.


Assuntos
Adjuvantes Imunológicos/farmacologia , Antígenos Virais/imunologia , Candida albicans/química , Mananas/imunologia , Hidróxido de Alumínio/química , Animais , Anticorpos Neutralizantes/imunologia , Especificidade de Anticorpos/imunologia , Linfócitos B/imunologia , COVID-19/imunologia , COVID-19/prevenção & controle , COVID-19/virologia , Chlorocebus aethiops , Epitopos/imunologia , Imunidade Inata , Imunização , Inflamação/patologia , Interferons/metabolismo , Lectinas Tipo C/metabolismo , Ligantes , Pulmão/imunologia , Pulmão/patologia , Pulmão/virologia , Linfonodos/imunologia , Linfonodos/metabolismo , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Seios Paranasais/metabolismo , Subunidades Proteicas/metabolismo , Lectina 1 Semelhante a Ig de Ligação ao Ácido Siálico/metabolismo , Solubilidade , Glicoproteína da Espícula de Coronavírus/metabolismo , Linfócitos T/imunologia , Fator de Transcrição RelB/metabolismo , Células Vero , beta-Glucanas/metabolismo
4.
Cell ; 184(20): 5189-5200.e7, 2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34537136

RESUMO

The independent emergence late in 2020 of the B.1.1.7, B.1.351, and P.1 lineages of SARS-CoV-2 prompted renewed concerns about the evolutionary capacity of this virus to overcome public health interventions and rising population immunity. Here, by examining patterns of synonymous and non-synonymous mutations that have accumulated in SARS-CoV-2 genomes since the pandemic began, we find that the emergence of these three "501Y lineages" coincided with a major global shift in the selective forces acting on various SARS-CoV-2 genes. Following their emergence, the adaptive evolution of 501Y lineage viruses has involved repeated selectively favored convergent mutations at 35 genome sites, mutations we refer to as the 501Y meta-signature. The ongoing convergence of viruses in many other lineages on this meta-signature suggests that it includes multiple mutation combinations capable of promoting the persistence of diverse SARS-CoV-2 lineages in the face of mounting host immune recognition.


Assuntos
COVID-19/epidemiologia , Evolução Molecular , Mutação , Pandemias , SARS-CoV-2/genética , Sequência de Aminoácidos/genética , COVID-19/imunologia , COVID-19/transmissão , COVID-19/virologia , Códon/genética , Genes Virais , Deriva Genética , Adaptação ao Hospedeiro/genética , Humanos , Evasão da Resposta Imune , Filogenia , Saúde Pública
5.
Cell ; 184(20): 5179-5188.e8, 2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34499854

RESUMO

We present evidence for multiple independent origins of recombinant SARS-CoV-2 viruses sampled from late 2020 and early 2021 in the United Kingdom. Their genomes carry single-nucleotide polymorphisms and deletions that are characteristic of the B.1.1.7 variant of concern but lack the full complement of lineage-defining mutations. Instead, the remainder of their genomes share contiguous genetic variation with non-B.1.1.7 viruses circulating in the same geographic area at the same time as the recombinants. In four instances, there was evidence for onward transmission of a recombinant-origin virus, including one transmission cluster of 45 sequenced cases over the course of 2 months. The inferred genomic locations of recombination breakpoints suggest that every community-transmitted recombinant virus inherited its spike region from a B.1.1.7 parental virus, consistent with a transmission advantage for B.1.1.7's set of mutations.


Assuntos
COVID-19/epidemiologia , COVID-19/transmissão , Pandemias , Recombinação Genética , SARS-CoV-2/genética , Sequência de Bases/genética , COVID-19/virologia , Biologia Computacional/métodos , Frequência do Gene , Genoma Viral , Genótipo , Humanos , Mutação , Filogenia , Polimorfismo de Nucleotídeo Único , Reino Unido/epidemiologia , Sequenciamento Completo do Genoma/métodos
6.
Cell ; 184(19): 4848-4856, 2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-34480864

RESUMO

Since the first reports of a novel severe acute respiratory syndrome (SARS)-like coronavirus in December 2019 in Wuhan, China, there has been intense interest in understanding how severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in the human population. Recent debate has coalesced around two competing ideas: a "laboratory escape" scenario and zoonotic emergence. Here, we critically review the current scientific evidence that may help clarify the origin of SARS-CoV-2.


Assuntos
SARS-CoV-2/fisiologia , Animais , Evolução Biológica , COVID-19/virologia , Humanos , Laboratórios , SARS-CoV-2/genética , Zoonoses/virologia
7.
Cell ; 184(1): 64-75.e11, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33275900

RESUMO

Global dispersal and increasing frequency of the SARS-CoV-2 spike protein variant D614G are suggestive of a selective advantage but may also be due to a random founder effect. We investigate the hypothesis for positive selection of spike D614G in the United Kingdom using more than 25,000 whole genome SARS-CoV-2 sequences. Despite the availability of a large dataset, well represented by both spike 614 variants, not all approaches showed a conclusive signal of positive selection. Population genetic analysis indicates that 614G increases in frequency relative to 614D in a manner consistent with a selective advantage. We do not find any indication that patients infected with the spike 614G variant have higher COVID-19 mortality or clinical severity, but 614G is associated with higher viral load and younger age of patients. Significant differences in growth and size of 614G phylogenetic clusters indicate a need for continued study of this variant.


Assuntos
Substituição de Aminoácidos , COVID-19/transmissão , COVID-19/virologia , SARS-CoV-2/genética , SARS-CoV-2/patogenicidade , Glicoproteína da Espícula de Coronavírus/genética , Ácido Aspártico/análise , Ácido Aspártico/genética , COVID-19/epidemiologia , Genoma Viral , Glicina/análise , Glicina/genética , Humanos , Mutação , SARS-CoV-2/crescimento & desenvolvimento , Reino Unido/epidemiologia , Virulência , Sequenciamento Completo do Genoma
8.
Cell ; 184(24): 5916-5931.e17, 2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34767757

RESUMO

There is increasing interest in the potential contribution of the gut microbiome to autism spectrum disorder (ASD). However, previous studies have been underpowered and have not been designed to address potential confounding factors in a comprehensive way. We performed a large autism stool metagenomics study (n = 247) based on participants from the Australian Autism Biobank and the Queensland Twin Adolescent Brain project. We found negligible direct associations between ASD diagnosis and the gut microbiome. Instead, our data support a model whereby ASD-related restricted interests are associated with less-diverse diet, and in turn reduced microbial taxonomic diversity and looser stool consistency. In contrast to ASD diagnosis, our dataset was well powered to detect microbiome associations with traits such as age, dietary intake, and stool consistency. Overall, microbiome differences in ASD may reflect dietary preferences that relate to diagnostic features, and we caution against claims that the microbiome has a driving role in ASD.


Assuntos
Transtorno Autístico/microbiologia , Comportamento Alimentar , Microbioma Gastrointestinal , Adolescente , Fatores Etários , Transtorno Autístico/diagnóstico , Comportamento , Criança , Pré-Escolar , Fezes/microbiologia , Feminino , Humanos , Masculino , Fenótipo , Filogenia , Especificidade da Espécie
9.
Nat Immunol ; 24(8): 1331-1344, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37443284

RESUMO

CD4+ T helper 17 (TH17) cells protect barrier tissues but also trigger autoimmunity. The mechanisms behind these opposing processes remain unclear. Here, we found that the transcription factor EGR2 controlled the transcriptional program of pathogenic TH17 cells in the central nervous system (CNS) but not that of protective TH17 cells at barrier sites. EGR2 was significantly elevated in myelin-reactive CD4+ T cells from patients with multiple sclerosis and mice with autoimmune neuroinflammation. The EGR2 transcriptional program was intricately woven within the TH17 cell transcriptional regulatory network and showed high interconnectivity with core TH17 cell-specific transcription factors. Mechanistically, EGR2 enhanced TH17 cell differentiation and myeloid cell recruitment to the CNS by upregulating pathogenesis-associated genes and myelomonocytic chemokines. T cell-specific deletion of Egr2 attenuated neuroinflammation without compromising the host's ability to control infections. Our study shows that EGR2 regulates tissue-specific and disease-specific functions in pathogenic TH17 cells in the CNS.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Animais , Camundongos , Diferenciação Celular , Sistema Nervoso Central , Camundongos Endogâmicos C57BL , Doenças Neuroinflamatórias , Células Th1 , Células Th17 , Fatores de Transcrição , Virulência , Humanos
10.
Nat Rev Mol Cell Biol ; 24(6): 430-447, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36596869

RESUMO

Genes specifying long non-coding RNAs (lncRNAs) occupy a large fraction of the genomes of complex organisms. The term 'lncRNAs' encompasses RNA polymerase I (Pol I), Pol II and Pol III transcribed RNAs, and RNAs from processed introns. The various functions of lncRNAs and their many isoforms and interleaved relationships with other genes make lncRNA classification and annotation difficult. Most lncRNAs evolve more rapidly than protein-coding sequences, are cell type specific and regulate many aspects of cell differentiation and development and other physiological processes. Many lncRNAs associate with chromatin-modifying complexes, are transcribed from enhancers and nucleate phase separation of nuclear condensates and domains, indicating an intimate link between lncRNA expression and the spatial control of gene expression during development. lncRNAs also have important roles in the cytoplasm and beyond, including in the regulation of translation, metabolism and signalling. lncRNAs often have a modular structure and are rich in repeats, which are increasingly being shown to be relevant to their function. In this Consensus Statement, we address the definition and nomenclature of lncRNAs and their conservation, expression, phenotypic visibility, structure and functions. We also discuss research challenges and provide recommendations to advance the understanding of the roles of lncRNAs in development, cell biology and disease.


Assuntos
RNA Longo não Codificante , RNA Longo não Codificante/genética , Núcleo Celular/genética , Cromatina/genética , Sequências Reguladoras de Ácido Nucleico , RNA Polimerase II/genética
11.
Cell ; 180(2): 248-262.e21, 2020 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-31978344

RESUMO

The testis expresses the largest number of genes of any mammalian organ, a finding that has long puzzled molecular biologists. Our single-cell transcriptomic data of human and mouse spermatogenesis provide evidence that this widespread transcription maintains DNA sequence integrity in the male germline by correcting DNA damage through a mechanism we term transcriptional scanning. We find that genes expressed during spermatogenesis display lower mutation rates on the transcribed strand and have low diversity in the population. Moreover, this effect is fine-tuned by the level of gene expression during spermatogenesis. The unexpressed genes, which in our model do not benefit from transcriptional scanning, diverge faster over evolutionary timescales and are enriched for sensory and immune-defense functions. Collectively, we propose that transcriptional scanning shapes germline mutation signatures and modulates mutation rates in a gene-specific manner, maintaining DNA sequence integrity for the bulk of genes but allowing for faster evolution in a specific subset.


Assuntos
Expressão Gênica/genética , Mutação em Linhagem Germinativa/genética , Espermatogênese/genética , Adulto , Animais , Sequência de Bases/genética , Perfilação da Expressão Gênica/métodos , Células Germinativas/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Taxa de Mutação , Testículo/metabolismo , Transcrição Gênica/genética , Transcriptoma/genética
12.
Cell ; 181(3): 688-701.e16, 2020 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-32315618

RESUMO

Impairment of protein phosphatases, including the family of serine/threonine phosphatases designated PP2A, is essential for the pathogenesis of many diseases, including cancer. The ability of PP2A to dephosphorylate hundreds of proteins is regulated by over 40 specificity-determining regulatory "B" subunits that compete for assembly and activation of heterogeneous PP2A heterotrimers. Here, we reveal how a small molecule, DT-061, specifically stabilizes the B56α-PP2A holoenzyme in a fully assembled, active state to dephosphorylate selective substrates, such as its well-known oncogenic target, c-Myc. Our 3.6 Å structure identifies molecular interactions between DT-061 and all three PP2A subunits that prevent dissociation of the active enzyme and highlight inherent mechanisms of PP2A complex assembly. Thus, our findings provide fundamental insights into PP2A complex assembly and regulation, identify a unique interfacial stabilizing mode of action for therapeutic targeting, and aid in the development of phosphatase-based therapeutics tailored against disease specific phospho-protein targets.


Assuntos
Proteína Fosfatase 2/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular Tumoral , Ativadores de Enzimas/metabolismo , Células HEK293 , Xenoenxertos , Humanos , Masculino , Camundongos , Camundongos Nus , Modelos Moleculares , Complexos Multiproteicos/metabolismo , Proteína Fosfatase 2/química , Subunidades Proteicas
13.
Cell ; 182(2): 497-514.e22, 2020 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-32579974

RESUMO

To define the cellular composition and architecture of cutaneous squamous cell carcinoma (cSCC), we combined single-cell RNA sequencing with spatial transcriptomics and multiplexed ion beam imaging from a series of human cSCCs and matched normal skin. cSCC exhibited four tumor subpopulations, three recapitulating normal epidermal states, and a tumor-specific keratinocyte (TSK) population unique to cancer, which localized to a fibrovascular niche. Integration of single-cell and spatial data mapped ligand-receptor networks to specific cell types, revealing TSK cells as a hub for intercellular communication. Multiple features of potential immunosuppression were observed, including T regulatory cell (Treg) co-localization with CD8 T cells in compartmentalized tumor stroma. Finally, single-cell characterization of human tumor xenografts and in vivo CRISPR screens identified essential roles for specific tumor subpopulation-enriched gene networks in tumorigenesis. These data define cSCC tumor and stromal cell subpopulations, the spatial niches where they interact, and the communicating gene networks that they engage in cancer.


Assuntos
Carcinoma de Células Escamosas/metabolismo , Genômica/métodos , Neoplasias Cutâneas/metabolismo , Animais , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Humanos , Queratinócitos/citologia , Queratinócitos/metabolismo , Camundongos , RNA-Seq , Análise de Célula Única , Pele/metabolismo , Neoplasias Cutâneas/patologia , Transcriptoma , Transplante Heterólogo
14.
Cell ; 176(3): 448-458.e12, 2019 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-30639101

RESUMO

Cannabis elicits its mood-enhancing and analgesic effects through the cannabinoid receptor 1 (CB1), a G protein-coupled receptor (GPCR) that signals primarily through the adenylyl cyclase-inhibiting heterotrimeric G protein Gi. Activation of CB1-Gi signaling pathways holds potential for treating a number of neurological disorders and is thus crucial to understand the mechanism of Gi activation by CB1. Here, we present the structure of the CB1-Gi signaling complex bound to the highly potent agonist MDMB-Fubinaca (FUB), a recently emerged illicit synthetic cannabinoid infused in street drugs that have been associated with numerous overdoses and fatalities. The structure illustrates how FUB stabilizes the receptor in an active state to facilitate nucleotide exchange in Gi. The results compose the structural framework to explain CB1 activation by different classes of ligands and provide insights into the G protein coupling and selectivity mechanisms adopted by the receptor.


Assuntos
Receptor CB1 de Canabinoide/metabolismo , Receptor CB1 de Canabinoide/ultraestrutura , Animais , Agonistas de Receptores de Canabinoides/farmacologia , Canabinoides/farmacologia , Microscopia Crioeletrônica/métodos , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Humanos , Indazóis/farmacologia , Ligantes , Ligação Proteica , Receptor CB1 de Canabinoide/química , Receptores de Canabinoides/química , Receptores de Canabinoides/metabolismo , Receptores de Canabinoides/ultraestrutura , Receptores Acoplados a Proteínas G/metabolismo , Células Sf9 , Transdução de Sinais/efeitos dos fármacos
16.
Annu Rev Biochem ; 87: 921-964, 2018 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-29925267

RESUMO

Protein serine/threonine phosphatases (PPPs) are ancient enzymes, with distinct types conserved across eukaryotic evolution. PPPs are segregated into types primarily on the basis of the unique interactions of PPP catalytic subunits with regulatory proteins. The resulting holoenzymes dock substrates distal to the active site to enhance specificity. This review focuses on the subunit and substrate interactions for PPP that depend on short linear motifs. Insights about these motifs from structures of holoenzymes open new opportunities for computational biology approaches to elucidate PPP networks. There is an expanding knowledge base of posttranslational modifications of PPP catalytic and regulatory subunits, as well as of their substrates, including phosphorylation, acetylation, and ubiquitination. Cross talk between these posttranslational modifications creates PPP-based signaling. Knowledge of PPP complexes, signaling clusters, as well as how PPPs communicate with each other in response to cellular signals should unlock the doors to PPP networks and signaling "clouds" that orchestrate and coordinate different aspects of cell physiology.


Assuntos
Fosfoproteínas Fosfatases/metabolismo , Animais , Biologia Computacional , Evolução Molecular , Humanos , Modelos Moleculares , Fosfoproteínas Fosfatases/química , Fosfoproteínas Fosfatases/genética , Mapas de Interação de Proteínas , Processamento de Proteína Pós-Traducional , Subunidades Proteicas , Especificidade por Substrato
17.
Cell ; 173(2): 305-320.e10, 2018 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-29625049

RESUMO

The Cancer Genome Atlas (TCGA) has catalyzed systematic characterization of diverse genomic alterations underlying human cancers. At this historic junction marking the completion of genomic characterization of over 11,000 tumors from 33 cancer types, we present our current understanding of the molecular processes governing oncogenesis. We illustrate our insights into cancer through synthesis of the findings of the TCGA PanCancer Atlas project on three facets of oncogenesis: (1) somatic driver mutations, germline pathogenic variants, and their interactions in the tumor; (2) the influence of the tumor genome and epigenome on transcriptome and proteome; and (3) the relationship between tumor and the microenvironment, including implications for drugs targeting driver events and immunotherapies. These results will anchor future characterization of rare and common tumor types, primary and relapsed tumors, and cancers across ancestry groups and will guide the deployment of clinical genomic sequencing.


Assuntos
Carcinogênese/genética , Genômica , Neoplasias/patologia , Reparo do DNA/genética , Bases de Dados Genéticas , Genes Neoplásicos , Humanos , Redes e Vias Metabólicas/genética , Instabilidade de Microssatélites , Mutação , Neoplasias/genética , Neoplasias/imunologia , Transcriptoma , Microambiente Tumoral/genética
18.
Cell ; 173(2): 321-337.e10, 2018 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-29625050

RESUMO

Genetic alterations in signaling pathways that control cell-cycle progression, apoptosis, and cell growth are common hallmarks of cancer, but the extent, mechanisms, and co-occurrence of alterations in these pathways differ between individual tumors and tumor types. Using mutations, copy-number changes, mRNA expression, gene fusions and DNA methylation in 9,125 tumors profiled by The Cancer Genome Atlas (TCGA), we analyzed the mechanisms and patterns of somatic alterations in ten canonical pathways: cell cycle, Hippo, Myc, Notch, Nrf2, PI-3-Kinase/Akt, RTK-RAS, TGFß signaling, p53 and ß-catenin/Wnt. We charted the detailed landscape of pathway alterations in 33 cancer types, stratified into 64 subtypes, and identified patterns of co-occurrence and mutual exclusivity. Eighty-nine percent of tumors had at least one driver alteration in these pathways, and 57% percent of tumors had at least one alteration potentially targetable by currently available drugs. Thirty percent of tumors had multiple targetable alterations, indicating opportunities for combination therapy.


Assuntos
Bases de Dados Genéticas , Neoplasias/patologia , Transdução de Sinais/genética , Genes Neoplásicos , Humanos , Neoplasias/genética , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proteínas Wnt/genética , Proteínas Wnt/metabolismo
19.
Nat Immunol ; 21(11): 1384-1396, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32989327

RESUMO

T follicular helper (TFH) cells are critical in adaptive immune responses to pathogens and vaccines; however, what drives the initiation of their developmental program remains unclear. Studies suggest that a T cell antigen receptor (TCR)-dependent mechanism may be responsible for the earliest TFH cell-fate decision, but a critical aspect of the TCR has been overlooked: tonic TCR signaling. We hypothesized that tonic signaling influences early TFH cell development. Here, two murine TCR-transgenic CD4+ T cells, LLO56 and LLO118, which recognize the same antigenic peptide presented on major histocompatibility complex molecules but experience disparate strengths of tonic signaling, revealed low tonic signaling promotes TFH cell differentiation. Polyclonal T cells paralleled these findings, with naive Nur77 expression distinguishing TFH cell potential. Two mouse lines were also generated to both increase and decrease tonic signaling strength, directly establishing an inverse relationship between tonic signaling strength and TFH cell development. Our findings elucidate a central role for tonic TCR signaling in early TFH cell-lineage decisions.


Assuntos
Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais , Células T Auxiliares Foliculares/imunologia , Células T Auxiliares Foliculares/metabolismo , Animais , Antígenos/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Diferenciação Celular/imunologia , Antígenos H-2/imunologia , Imunização , Imunofenotipagem , Ativação Linfocitária/imunologia , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Peptídeos/imunologia
20.
Immunity ; 56(2): 433-443.e5, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36792576

RESUMO

Pfs230 domain 1 (Pfs230D1) is an advanced malaria transmission-blocking vaccine antigen demonstrating high functional activity in clinical trials. However, the structural and functional correlates of transmission-blocking activity are not defined. Here, we characterized a panel of human monoclonal antibodies (hmAbs) elicited in vaccinees immunized with Pfs230D1. These hmAbs exhibited diverse transmission-reducing activity, yet all bound to Pfs230D1 with nanomolar affinity. We compiled epitope-binning data for seventeen hmAbs and structures of nine hmAbs complexes to construct a high-resolution epitope map and revealed that potent transmission-reducing hmAbs bound to one face of Pfs230D1, while non-potent hmAbs bound to the opposing side. The structure of Pfs230D1D2 revealed that non-potent transmission-reducing epitopes were occluded by the second domain. The hmAb epitope map delineated binary hmAb combinations that synergized for extremely high-potency, transmission-reducing activity. This work provides a high-resolution guide for structure-based design of enhanced immunogens and informs diagnostics that measure the transmission-reducing response.


Assuntos
Vacinas Antimaláricas , Humanos , Epitopos , Anticorpos Neutralizantes , Antígenos , Anticorpos Antivirais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA