Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 245
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 144(6): 970-85, 2011 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-21414487

RESUMO

Evolutionary change in animal morphology results from alteration of the functional organization of the gene regulatory networks (GRNs) that control development of the body plan. A major mechanism of evolutionary change in GRN structure is alteration of cis-regulatory modules that determine regulatory gene expression. Here we consider the causes and consequences of GRN evolution. Although some GRN subcircuits are of great antiquity, other aspects are highly flexible and thus in any given genome more recent. This mosaic view of the evolution of GRN structure explains major aspects of evolutionary process, such as hierarchical phylogeny and discontinuities of paleontological change.


Assuntos
Evolução Biológica , Redes Reguladoras de Genes , Animais , Humanos , Morfogênese , Mutação , Filogenia
2.
Nature ; 586(7828): 248-256, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33028999

RESUMO

Nitrous oxide (N2O), like carbon dioxide, is a long-lived greenhouse gas that accumulates in the atmosphere. Over the past 150 years, increasing atmospheric N2O concentrations have contributed to stratospheric ozone depletion1 and climate change2, with the current rate of increase estimated at 2 per cent per decade. Existing national inventories do not provide a full picture of N2O emissions, owing to their omission of natural sources and limitations in methodology for attributing anthropogenic sources. Here we present a global N2O inventory that incorporates both natural and anthropogenic sources and accounts for the interaction between nitrogen additions and the biochemical processes that control N2O emissions. We use bottom-up (inventory, statistical extrapolation of flux measurements, process-based land and ocean modelling) and top-down (atmospheric inversion) approaches to provide a comprehensive quantification of global N2O sources and sinks resulting from 21 natural and human sectors between 1980 and 2016. Global N2O emissions were 17.0 (minimum-maximum estimates: 12.2-23.5) teragrams of nitrogen per year (bottom-up) and 16.9 (15.9-17.7) teragrams of nitrogen per year (top-down) between 2007 and 2016. Global human-induced emissions, which are dominated by nitrogen additions to croplands, increased by 30% over the past four decades to 7.3 (4.2-11.4) teragrams of nitrogen per year. This increase was mainly responsible for the growth in the atmospheric burden. Our findings point to growing N2O emissions in emerging economies-particularly Brazil, China and India. Analysis of process-based model estimates reveals an emerging N2O-climate feedback resulting from interactions between nitrogen additions and climate change. The recent growth in N2O emissions exceeds some of the highest projected emission scenarios3,4, underscoring the urgency to mitigate N2O emissions.


Assuntos
Óxido Nitroso/análise , Óxido Nitroso/metabolismo , Agricultura , Atmosfera/química , Produtos Agrícolas/metabolismo , Atividades Humanas , Internacionalidade , Nitrogênio/análise , Nitrogênio/metabolismo
3.
Glob Chang Biol ; 30(5): e17303, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38741339

RESUMO

Nitrous oxide (N2O) emissions from livestock manure contribute significantly to the growth of atmospheric N2O, a powerful greenhouse gas and dominant ozone-depleting substance. Here, we estimate global N2O emissions from livestock manure during 1890-2020 using the tier 2 approach of the 2019 Refinement to the 2006 IPCC Guidelines. Global N2O emissions from livestock manure increased by ~350% from 451 [368-556] Gg N year-1 in 1890 to 2042 [1677-2514] Gg N year-1 in 2020. These emissions contributed ~30% to the global anthropogenic N2O emissions in the decade 2010-2019. Cattle contributed the most (60%) to the increase, followed by poultry (19%), pigs (15%), and sheep and goats (6%). Regionally, South Asia, Africa, and Latin America dominated the growth in global emissions since the 1990s. Nationally, the largest emissions were found in India (329 Gg N year-1), followed by China (267 Gg N year-1), the United States (163 Gg N year-1), Brazil (129 Gg N year-1) and Pakistan (102 Gg N year-1) in the 2010s. We found a substantial impact of livestock productivity, specifically animal body weight and milk yield, on the emission trends. Furthermore, a large spread existed among different methodologies in estimates of global N2O emission from livestock manure, with our results 20%-25% lower than those based on the 2006 IPCC Guidelines. This study highlights the need for robust time-variant model parameterization and continuous improvement of emissions factors to enhance the precision of emission inventories. Additionally, urgent mitigation is required, as all available inventories indicate a rapid increase in global N2O emissions from livestock manure in recent decades.


Assuntos
Gado , Esterco , Óxido Nitroso , Óxido Nitroso/análise , Esterco/análise , Animais , Poluentes Atmosféricos/análise
4.
Am Heart J ; 260: 90-99, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36842486

RESUMO

BACKGROUND: Mobile health applications are becoming increasingly common. Prior work has demonstrated reduced heart failure (HF) hospitalizations with HF disease management programs; however, few of these programs have used tablet computer-based technology. METHODS: Participants with a diagnosis of HF and at least 1 high risk feature for hospitalization were randomized to either an established telephone-based disease management program or the same disease management program with the addition of remote monitoring of weight, blood pressure, heart rate and symptoms via a tablet computer for 90 days. The primary endpoint was the number of days hospitalized for HF assessed at 90 days. RESULTS: From August 2014 to April 2019, 212 participants from 3 hospitals in Massachusetts were randomized 3:1 to telemonitoring-based HF disease management (n = 159) or telephone-based HF disease management (n = 53) with 98% of individuals in both study groups completing the 90 days of follow-up. There was no significant difference in the number of days hospitalized for HF between the telemonitoring disease management group (0.88 ± 3.28 days per patient-90 days) and the telephone-based disease management group (1.00 ± 2.97 days per patient-90 days); incidence rate ratio 0.82 (95% confidence interval, 0.43-1.58; P = .442). CONCLUSIONS: The addition of tablet-based telemonitoring to an established HF telephone-based disease management program did not reduce HF hospitalizations; however, study power was limited.


Assuntos
Insuficiência Cardíaca , Telemedicina , Humanos , Hospitalização , Telefone , Computadores de Mão , Gerenciamento Clínico
5.
Echocardiography ; 39(12): 1643-1646, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36376266

RESUMO

BACKGROUND: The echocardiographic assessment of diastolic function in the context of atrial fibrillation (AF) has been controversial and can be challenging and labor-intensive. We aimed to assess the actual practice of diastolic evaluation in AF in our community hospital echocardiography laboratory and to improve clinical performance by a quality improvement project. METHODS: We reviewed 244 echocardiograms in patients with AF at the time of echocardiography from November 2019 to November 2020 (pre-intervention phase). We classified cases into a complete versus incomplete evaluation group according to the completeness of diastolic parameter measurement. After an educational intervention, we reviewed 68 echocardiograms in patients with AF from August 2021 to October 2021 (post-intervention phase). RESULTS: Our results demonstrated an improvement in a complete diastolic assessment from 69% to 91% after intervention (p < .001). In the pre-intervention phase, the four parameters (mitral inflow pulsed wave Doppler image, left atrium volume index, mitral annular tissue Doppler image [TDI], and tricuspid regurgitation Vmax), mitral annular TDI was not acquired in 71 out of 244 cases (29.1%) and those cases were classified as incomplete evaluation group. Interestingly, in the pre-intervention phase, 57 out of 162 cases (35%) with preserved EF (≥50%) received significantly more incomplete diastolic evaluation than 14 out of 82 patients (17%) with reduced EF (<50%) (p = .004). There were no statistically significant differences in age, BMI, the reason for requesting echocardiography, and patient level of care between the complete and incomplete evaluation groups. In the post-intervention phase, completeness of diastolic measurement in AF was significantly improved compared to the pre-intervention phase (29% vs. 9%, p < .001, respectively). CONCLUSION: A quality improvement project effectively improved the clinical performance of diastolic evaluation in AF in our community echocardiography laboratory. After the intervention, we decreased an incomplete evaluation from 30% to 9%. More efforts should be needed to increase awareness and familiarity in evaluating diastolic function in AF.


Assuntos
Fibrilação Atrial , Humanos , Fibrilação Atrial/diagnóstico por imagem , Hospitais Comunitários , Melhoria de Qualidade , Ecocardiografia
6.
Development ; 145(24)2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30470703

RESUMO

Evolution of the animal body plan is driven by changes in developmental gene regulatory networks (GRNs), but how networks change to control novel developmental phenotypes remains, in most cases, unresolved. Here, we address GRN evolution by comparing the endomesoderm GRN in two echinoid sea urchins, Strongylocentrotus purpuratus and Eucidaris tribuloides, with at least 268 million years of independent evolution. We first analyzed the expression of twelve transcription factors and signaling molecules of the S. purpuratus GRN in E. tribuloides embryos, showing that orthologous regulatory genes are expressed in corresponding endomesodermal cell fates in the two species. However, perturbation of regulatory genes revealed that important regulatory circuits of the S. purpuratus GRN are significantly different in E. tribuloides For example, mesodermal Delta/Notch signaling controls exclusion of alternative cell fates in E. tribuloides but controls mesoderm induction and activation of a positive feedback circuit in S. purpuratus These results indicate that the architecture of the sea urchin endomesoderm GRN evolved by extensive gain and loss of regulatory interactions between a conserved set of regulatory factors that control endomesodermal cell fate specification.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Ouriços-do-Mar/embriologia , Ouriços-do-Mar/genética , Animais , Linhagem da Célula , Embrião não Mamífero/citologia , Embrião não Mamífero/metabolismo , Endoderma/embriologia , Endoderma/metabolismo , Retroalimentação Fisiológica , Gastrulação/genética , Mesoderma/embriologia , Mesoderma/metabolismo , Ouriços-do-Mar/citologia , Transdução de Sinais
7.
Nature ; 584(7820): 198-199, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32788730
8.
Nature ; 528(7580): 51-9, 2015 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-26595273

RESUMO

Improvements in nitrogen use efficiency in crop production are critical for addressing the triple challenges of food security, environmental degradation and climate change. Such improvements are conditional not only on technological innovation, but also on socio-economic factors that are at present poorly understood. Here we examine historical patterns of agricultural nitrogen-use efficiency and find a broad range of national approaches to agricultural development and related pollution. We analyse examples of nitrogen use and propose targets, by geographic region and crop type, to meet the 2050 global food demand projected by the Food and Agriculture Organization while also meeting the Sustainable Development Goals pertaining to agriculture recently adopted by the United Nations General Assembly. Furthermore, we discuss socio-economic policies and technological innovations that may help achieve them.


Assuntos
Agricultura , Conservação dos Recursos Naturais , Produtos Agrícolas/metabolismo , Nitrogênio/metabolismo , Agricultura/economia , Agricultura/normas , Agricultura/estatística & dados numéricos , Agricultura/tendências , Mudança Climática , Conservação dos Recursos Naturais/tendências , Produtos Agrícolas/economia , Produtos Agrícolas/provisão & distribuição , Ecologia , Poluição Ambiental/estatística & dados numéricos , Fertilizantes/economia , Fertilizantes/estatística & dados numéricos , Fertilizantes/provisão & distribuição , Abastecimento de Alimentos , Produto Interno Bruto , Humanos , Internacionalidade , Nitrogênio/química
9.
Dev Biol ; 445(1): 68-79, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30392838

RESUMO

The staggering complexity of the genome controls for developmental processes is revealed through massively parallel cis-regulatory analysis using new methods of perturbation and readout. The choice of combinations of these new methods is tailored to the system, question and resources at hand. Our focus is on issues that include the necessity or sufficiency of given cis-regulatory modules, cis-regulatory function in the normal spatial genomic context, and easily accessible high throughput and multiplexed analysis methods. In the sea urchin embryonic model, recombineered BACs offer new opportunities for consecutive modes of cis-regulatory analyses that answer these requirements, as we here demonstrate on a diverse suite of previously unstudied sea urchin effector genes expressed in skeletogenic cells. Positively active cis-regulatory modules were located in single Nanostring experiments per BAC containing the gene of interest, by application of our previously reported "barcode" tag vectors of which> 100 can be analyzed at one time. Computational analysis of DNA sequences that drive expression, based on the known skeletogenic regulatory state, then permitted effective identification of functional target site clusters. Deletion of these sub-regions from the parent BACs revealed module necessity, as simultaneous tests of the same regions in short constructs revealed sufficiency. Predicted functional inputs were then confirmed by site mutations, all generated and tested in multiplex formats. There emerged the simple conclusion that each effector gene utilizes a small subset of inputs from the skeletogenic GRN. These inputs may function to only adjust expression levels or in some cases necessary for expression. Since we know the GRN architecture upstream of the effector genes, we could then conceptually isolate and compare the wiring of the effector gene driver sub-circuits and identify the inputs whose removal abolish expression.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Engenharia Genética/métodos , Análise de Sequência de DNA/métodos , Animais , Cromossomos Artificiais Bacterianos/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Redes Reguladoras de Genes/genética , Redes Reguladoras de Genes/fisiologia , Genes Reporter/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Modelos Biológicos , Ouriços-do-Mar/embriologia , Ouriços-do-Mar/genética , Fatores de Transcrição/metabolismo
10.
Glob Chang Biol ; 26(1): 200-218, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31580516

RESUMO

Production and consumption of nitrous oxide (N2 O), methane (CH4 ), and carbon dioxide (CO2 ) are affected by complex interactions of temperature, moisture, and substrate supply, which are further complicated by spatial heterogeneity of the soil matrix. This microsite heterogeneity is often invoked to explain non-normal distributions of greenhouse gas (GHG) fluxes, also known as hot spots and hot moments. To advance numerical simulation of these belowground processes, we expanded the Dual Arrhenius and Michaelis-Menten model, to apply it consistently for all three GHGs with respect to the biophysical processes of production, consumption, and diffusion within the soil, including the contrasting effects of oxygen (O2 ) as substrate or inhibitor for each process. High-frequency chamber-based measurements of all three GHGs at the Howland Forest (ME, USA) were used to parameterize the model using a multiple constraint approach. The area under a soil chamber is partitioned according to a bivariate log-normal probability distribution function (PDF) of carbon and water content across a range of microsites, which leads to a PDF of heterotrophic respiration and O2 consumption among microsites. Linking microsite consumption of O2 with a diffusion model generates a broad range of microsite concentrations of O2 , which then determines the PDF of microsites that produce or consume CH4 and N2 O, such that a range of microsites occurs with both positive and negative signs for net CH4 and N2 O flux. Results demonstrate that it is numerically feasible for microsites of N2 O reduction and CH4 oxidation to co-occur under a single chamber, thus explaining occasional measurement of simultaneous uptake of both gases. Simultaneous simulation of all three GHGs in a parsimonious modeling framework is challenging, but it increases confidence that agreement between simulations and measurements is based on skillful numerical representation of processes across a heterogeneous environment.


Assuntos
Dióxido de Carbono , Óxido Nitroso , Metano , Probabilidade , Solo
11.
Glob Chang Biol ; 26(12): 7268-7283, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33026137

RESUMO

Globally, soils store two to three times as much carbon as currently resides in the atmosphere, and it is critical to understand how soil greenhouse gas (GHG) emissions and uptake will respond to ongoing climate change. In particular, the soil-to-atmosphere CO2 flux, commonly though imprecisely termed soil respiration (RS ), is one of the largest carbon fluxes in the Earth system. An increasing number of high-frequency RS measurements (typically, from an automated system with hourly sampling) have been made over the last two decades; an increasing number of methane measurements are being made with such systems as well. Such high frequency data are an invaluable resource for understanding GHG fluxes, but lack a central database or repository. Here we describe the lightweight, open-source COSORE (COntinuous SOil REspiration) database and software, that focuses on automated, continuous and long-term GHG flux datasets, and is intended to serve as a community resource for earth sciences, climate change syntheses and model evaluation. Contributed datasets are mapped to a single, consistent standard, with metadata on contributors, geographic location, measurement conditions and ancillary data. The design emphasizes the importance of reproducibility, scientific transparency and open access to data. While being oriented towards continuously measured RS , the database design accommodates other soil-atmosphere measurements (e.g. ecosystem respiration, chamber-measured net ecosystem exchange, methane fluxes) as well as experimental treatments (heterotrophic only, etc.). We give brief examples of the types of analyses possible using this new community resource and describe its accompanying R software package.


Assuntos
Gases de Efeito Estufa , Atmosfera , Dióxido de Carbono/análise , Ecossistema , Gases de Efeito Estufa/análise , Metano/análise , Óxido Nitroso/análise , Reprodutibilidade dos Testes , Respiração , Solo
12.
Proc Natl Acad Sci U S A ; 114(23): 5862-5869, 2017 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-28584110

RESUMO

Gene regulatory networks (GRNs) provide a transformation function between the static genomic sequence and the primary spatial specification processes operating development. The regulatory information encompassed in developmental GRNs thus goes far beyond the control of individual genes. We here address regulatory information at different levels of network organization, from single node to subcircuit to large-scale GRNs and discuss how regulatory design features such as network architecture, hierarchical organization, and cis-regulatory logic contribute to the developmental function of network circuits. Using specific subcircuits from the sea urchin endomesoderm GRN, for which both circuit design and biological function have been described, we evaluate by Boolean modeling and in silico perturbations the import of given circuit features on developmental function. The examples include subcircuits encoding positive feedback, mutual repression, and coherent feedforward, as well as signaling interaction circuitry. Within the hierarchy of the endomesoderm GRN, these subcircuits are organized in an intertwined and overlapping manner. Thus, we begin to see how regulatory information encoded at individual nodes is integrated at all levels of network organization to control developmental process.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Ouriços-do-Mar/genética , Animais , Retroalimentação Fisiológica , Modelos Biológicos , Ouriços-do-Mar/crescimento & desenvolvimento
13.
Development ; 143(19): 3632-3637, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27702788

RESUMO

In situ hybridization methods are used across the biological sciences to map mRNA expression within intact specimens. Multiplexed experiments, in which multiple target mRNAs are mapped in a single sample, are essential for studying regulatory interactions, but remain cumbersome in most model organisms. Programmable in situ amplifiers based on the mechanism of hybridization chain reaction (HCR) overcome this longstanding challenge by operating independently within a sample, enabling multiplexed experiments to be performed with an experimental timeline independent of the number of target mRNAs. To assist biologists working across a broad spectrum of organisms, we demonstrate multiplexed in situ HCR in diverse imaging settings: bacteria, whole-mount nematode larvae, whole-mount fruit fly embryos, whole-mount sea urchin embryos, whole-mount zebrafish larvae, whole-mount chicken embryos, whole-mount mouse embryos and formalin-fixed paraffin-embedded human tissue sections. In addition to straightforward multiplexing, in situ HCR enables deep sample penetration, high contrast and subcellular resolution, providing an incisive tool for the study of interlaced and overlapping expression patterns, with implications for research communities across the biological sciences.


Assuntos
Hibridização In Situ/métodos , RNA Mensageiro/metabolismo , Animais , Drosophila , Embrião não Mamífero/metabolismo , Humanos , Peixe-Zebra
14.
Glob Chang Biol ; 25(9): 2855-2868, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31237398

RESUMO

Drought, fire, and windstorms can interact to degrade tropical forests and the ecosystem services they provide, but how these forests recover after catastrophic disturbance events remains relatively unknown. Here, we analyze multi-year measurements of vegetation dynamics and function (fluxes of CO2 and H2 O) in forests recovering from 7 years of controlled burns, followed by wind disturbance. Located in southeast Amazonia, the experimental forest consists of three 50-ha plots burned annually, triennially, or not at all from 2004 to 2010. During the subsequent 6-year recovery period, postfire tree survivorship and biomass sharply declined, with aboveground C stocks decreasing by 70%-94% along forest edges (0-200 m into the forest) and 36%-40% in the forest interior. Vegetation regrowth in the forest understory triggered partial canopy closure (70%-80%) from 2010 to 2015. The composition and spatial distribution of grasses invading degraded forest evolved rapidly, likely because of the delayed mortality. Four years after the experimental fires ended (2014), the burned plots assimilated 36% less carbon than the Control, but net CO2 exchange and evapotranspiration (ET) had fully recovered 7 years after the experimental fires ended (2017). Carbon uptake recovery occurred largely in response to increased light-use efficiency and reduced postfire respiration, whereas increased water use associated with postfire growth of new recruits and remaining trees explained the recovery in ET. Although the effects of interacting disturbances (e.g., fires, forest fragmentation, and blowdown events) on mortality and biomass persist over many years, the rapid recovery of carbon and water fluxes can help stabilize local climate.


Assuntos
Dióxido de Carbono , Incêndios , Brasil , Ecossistema , Florestas , Árvores
15.
Glob Chang Biol ; 25(2): 640-659, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30414347

RESUMO

Our understanding and quantification of global soil nitrous oxide (N2 O) emissions and the underlying processes remain largely uncertain. Here, we assessed the effects of multiple anthropogenic and natural factors, including nitrogen fertilizer (N) application, atmospheric N deposition, manure N application, land cover change, climate change, and rising atmospheric CO2 concentration, on global soil N2 O emissions for the period 1861-2016 using a standard simulation protocol with seven process-based terrestrial biosphere models. Results suggest global soil N2 O emissions have increased from 6.3 ± 1.1 Tg N2 O-N/year in the preindustrial period (the 1860s) to 10.0 ± 2.0 Tg N2 O-N/year in the recent decade (2007-2016). Cropland soil emissions increased from 0.3 Tg N2 O-N/year to 3.3 Tg N2 O-N/year over the same period, accounting for 82% of the total increase. Regionally, China, South Asia, and Southeast Asia underwent rapid increases in cropland N2 O emissions since the 1970s. However, US cropland N2 O emissions had been relatively flat in magnitude since the 1980s, and EU cropland N2 O emissions appear to have decreased by 14%. Soil N2 O emissions from predominantly natural ecosystems accounted for 67% of the global soil emissions in the recent decade but showed only a relatively small increase of 0.7 ± 0.5 Tg N2 O-N/year (11%) since the 1860s. In the recent decade, N fertilizer application, N deposition, manure N application, and climate change contributed 54%, 26%, 15%, and 24%, respectively, to the total increase. Rising atmospheric CO2 concentration reduced soil N2 O emissions by 10% through the enhanced plant N uptake, while land cover change played a minor role. Our estimation here does not account for indirect emissions from soils and the directed emissions from excreta of grazing livestock. To address uncertainties in estimating regional and global soil N2 O emissions, this study recommends several critical strategies for improving the process-based simulations.


Assuntos
Mudança Climática , Gases de Efeito Estufa/análise , Desenvolvimento Industrial , Óxido Nitroso/análise , Solo/química , Poluentes Atmosféricos/análise , Modelos Teóricos , Fatores de Tempo , Incerteza
16.
EMBO J ; 33(11): 1193-4, 2014 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-24788410

RESUMO

Viewed through the lens of comparative regulatory mechanisms in developmental processes, the article of Calero-Nieto et al (2014, this issue) is of particular interest. This work uncovers the causal combinatorial subtleties of the distinct enhancer occupancy profiles displayed by ten different transcription factors, which are expressed in common in two hematopoietic cell types, a stem cell-like precursor and primary mast cells.


Assuntos
Regulação da Expressão Gênica/genética , Mastócitos/metabolismo , Células-Tronco/metabolismo , Fatores de Transcrição/genética , Transcrição Gênica/genética , Animais
17.
Development ; 142(22): 3892-901, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26417044

RESUMO

Six different populations of cells were isolated by fluorescence-activated cell sorting from disaggregated late blastula- and gastrula-stage sea urchin embryos according to the regulatory states expressed in these cells, as reported by recombineered bacterial artificial chromosomes producing fluorochromes. Transcriptomes recovered from these embryonic cell populations revealed striking, early differential expression of large cohorts of effector genes. The six cell populations were presumptive pigment cells, presumptive neurogenic cells, presumptive skeletogenic cells, cells from the stomodeal region of the oral ectoderm, ciliated band cells and cells from the endoderm/ectoderm boundary that will give rise both to hindgut and to border ectoderm. Transcriptome analysis revealed that each of these domains specifically expressed several hundred effector genes at significant levels. Annotation indicated the qualitative individuality of the functional nature of each cell population, even though they were isolated from embryos only 1-2 days old. In no case was more than a tiny fraction of the transcripts enriched in one population also enriched in any other of the six populations studied. As was particularly clear in the cases of the presumptive pigment, neurogenic and skeletogenic cells, all three of which represent precociously differentiating cell types of this embryo, most specifically expressed genes of given cell types are not significantly expressed at all in the other cell types. Thus, at the effector gene level, a dramatic, cell type-specific pattern of differential gene regulation is established well before any significant embryonic morphogenesis has occurred.


Assuntos
Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Genoma/genética , Ouriços-do-Mar/embriologia , Animais , Cromossomos Artificiais Bacterianos , Citometria de Fluxo , Corantes Fluorescentes , Perfilação da Expressão Gênica , Técnicas de Transferência de Genes , Microscopia de Fluorescência , Anotação de Sequência Molecular , Ouriços-do-Mar/citologia , Ouriços-do-Mar/genética
18.
Development ; 142(5): 953-61, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25655703

RESUMO

The trapezoidal ciliated band (CB) of the postgastrular sea urchin embryo surrounds the oral ectoderm, separating it from adjacent embryonic territories. Once differentiated, the CB is composed of densely arranged cells bearing long cilia that endow the larva with locomotion and feeding capability. The spatial pattern from which the CB will arise is first evidenced during pregastrular stages by expression of the pioneer gene onecut. Immediately after gastrulation, the CB consists of four separate regulatory state domains, each of which expresses a unique set of transcription factors: (1) the oral apical CB, located within the apical neurogenic field; (2) the animal lateral CB, which bilaterally separates the oral from aboral ectoderm; (3) the vegetal lateral CB, which bilaterally serves as signaling centers; and (4) the vegetal oral CB, which delineates the boundary with the underlying endoderm. Remarkably, almost all of the regulatory genes specifically expressed within these domains are downregulated by interference with SoxB1 expression, implying their common activation by this factor. Here, we show how the boundaries of the CB subdomains are established, and thus ascertain the design principle by which the geometry of this unique and complex regulatory state pattern is genomically controlled. Each of these boundaries, on either side of the CB, is defined by spatially confined transcriptional repressors, the products of regulatory genes operating across the border of each subdomain. In total this requires deployment of about ten different repressors, which we identify in this work, thus exemplifying the complexity of information required for spatial regulatory organization during embryogenesis.


Assuntos
Cílios/fisiologia , Ouriços-do-Mar/embriologia , Animais , Ectoderma/metabolismo , Desenvolvimento Embrionário/genética , Desenvolvimento Embrionário/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Hibridização In Situ , Ouriços-do-Mar/metabolismo
19.
Nature ; 481(7381): 321-8, 2012 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-22258611

RESUMO

Agricultural expansion and climate variability have become important agents of disturbance in the Amazon basin. Recent studies have demonstrated considerable resilience of Amazonian forests to moderate annual drought, but they also show that interactions between deforestation, fire and drought potentially lead to losses of carbon storage and changes in regional precipitation patterns and river discharge. Although the basin-wide impacts of land use and drought may not yet surpass the magnitude of natural variability of hydrologic and biogeochemical cycles, there are some signs of a transition to a disturbance-dominated regime. These signs include changing energy and water cycles in the southern and eastern portions of the Amazon basin.


Assuntos
Ciclo do Carbono , Mudança Climática , Ecossistema , Árvores/metabolismo , Brasil , Secas , Incêndios , Agricultura Florestal , Chuva , Rios , Estações do Ano
20.
Proc Natl Acad Sci U S A ; 112(30): E4075-84, 2015 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-26170318

RESUMO

Evolution of animal body plans occurs with changes in the encoded genomic programs that direct development, by alterations in the structure of encoded developmental gene-regulatory networks (GRNs). However, study of this most fundamental of evolutionary processes requires experimentally tractable, phylogenetically divergent organisms that differ morphologically while belonging to the same monophyletic clade, plus knowledge of the relevant GRNs operating in at least one of the species. These conditions are met in the divergent embryogenesis of the two extant, morphologically distinct, echinoid (sea urchin) subclasses, Euechinoidea and Cidaroidea, which diverged from a common late Paleozoic ancestor. Here we focus on striking differences in the mode of embryonic skeletogenesis in a euechinoid, the well-known model Strongylocentrotus purpuratus (Sp), vs. the cidaroid Eucidaris tribuloides (Et). At the level of descriptive embryology, skeletogenesis in Sp and Et has long been known to occur by distinct means. The complete GRN controlling this process is known for Sp. We carried out targeted functional analyses on Et skeletogenesis to identify the presence, or demonstrate the absence, of specific regulatory linkages and subcircuits key to the operation of the Sp skeletogenic GRN. Remarkably, most of the canonical design features of the Sp skeletogenic GRN that we examined are either missing or operate differently in Et. This work directly implies a dramatic reorganization of genomic regulatory circuitry concomitant with the divergence of the euechinoids, which began before the end-Permian extinction.


Assuntos
Evolução Biológica , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Strongylocentrotus purpuratus/embriologia , Animais , Diferenciação Celular , Proteínas de Fluorescência Verde/metabolismo , Mesoderma/metabolismo , Oligonucleotídeos , Transdução de Sinais , Transcrição Gênica , Proteínas Wnt/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA