Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Integr Comp Biol ; 61(1): 302-315, 2021 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-33974061

RESUMO

Juvenile social experience, such as social isolation, has profound effects on communicative behavior, including signal production and reception. In the current study, we explored responsiveness to the neuromodulator serotonin as a potential mechanistic link between early life social isolation and auditory processing. The serotonergic system is sensitive to social isolation in many brain regions including the inferior colliculus (IC), an auditory midbrain nucleus. We investigated the effects of social experience on serotonergic responsiveness by measuring cFos, an immediate early gene product, in the IC of female mice. Serotonin was manipulated pharmacologically by administering fenfluramine, pCPA, or saline to mice that had undergone an extreme dichotomy in social experience after weaning: being housed in social groups versus individually. These mice were exposed to a 60-min recording of vocalizations from an opposite-sex interaction and perfused. Using immunohistochemistry, we measured the density of cFos-positive (cFos+) nuclei in the major subdivisions of the IC. Housing condition, drug treatment, and IC subregion all had a significant effect on cFos+ density. The central IC showed the highest density of cFos+ cells and also the most pronounced effects of housing condition and drug treatment. In the central IC, cFos+ density was higher following fenfluramine treatment than saline, and lower following pCPA treatment than fenfluramine. Individually housed mice showed a higher cFos+ density than socially housed mice in both of the pharmacological treatment groups, but not in the saline group. Drug treatment but not housing condition had strong effects on the behaviors of grooming, digging, rearing, and movement. Once the effects of drug condition were controlled, there were no across-individual correlations between cFos+ densities and behaviors. These findings suggest that the responses of auditory neurons to neuromodulation by serotonin are influenced by early life experience.


Assuntos
Colículos Inferiores , Neurônios Serotoninérgicos/fisiologia , Serotonina/fisiologia , Isolamento Social , Animais , Percepção Auditiva , Feminino , Mesencéfalo , Camundongos , Desmame
2.
eNeuro ; 8(2)2021.
Artigo em Inglês | MEDLINE | ID: mdl-33658309

RESUMO

Past social experience affects the circuitry responsible for producing and interpreting current behaviors. The social behavior network (SBN) is a candidate neural ensemble to investigate the consequences of early-life social isolation. The SBN interprets and produces social behaviors, such as vocalizations, through coordinated patterns of activity (functional connectivity) between its multiple nuclei. However, the SBN is relatively unexplored with respect to murine vocal processing. The serotonergic system is sensitive to past experience and innervates many nodes of the SBN; therefore, we tested whether serotonin signaling interacts with social experience to affect patterns of immediate early gene (IEG; cFos) induction in the male SBN following playback of social vocalizations. Male mice were separated into either social housing of three mice per cage or into isolated housing at 18-24 d postnatal. After 28-30 d in housing treatment, mice were parsed into one of three drug treatment groups: control, fenfluramine (FEN; increases available serotonin), or pCPA (depletes available serotonin) and exposed to a 60-min playback of female broadband vocalizations (BBVs). FEN generally increased the number of cFos-immunoreactive (-ir) neurons within the SBN, but effects were more pronounced in socially isolated mice. Despite a generalized increase in cFos immunoreactivity, isolated mice had reduced functional connectivity, clustering, and modularity compared with socially reared mice. These results are analogous to observations of functional dysconnectivity in persons with psychopathologies and suggests that early-life social isolation modulates serotonergic regulation of social networks.


Assuntos
Serotonina , Comportamento Social , Animais , Feminino , Masculino , Camundongos , Neurônios , Isolamento Social
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA