Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
JMIR Form Res ; 8: e55496, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39018557

RESUMO

BACKGROUND: The integrity and reliability of clinical research outcomes rely heavily on access to vast amounts of data. However, the fragmented distribution of these data across multiple institutions, along with ethical and regulatory barriers, presents significant challenges to accessing relevant data. While federated learning offers a promising solution to leverage insights from fragmented data sets, its adoption faces hurdles due to implementation complexities, scalability issues, and inclusivity challenges. OBJECTIVE: This paper introduces Federated Learning for Everyone (FL4E), an accessible framework facilitating multistakeholder collaboration in clinical research. It focuses on simplifying federated learning through an innovative ecosystem-based approach. METHODS: The "degree of federation" is a fundamental concept of FL4E, allowing for flexible integration of federated and centralized learning models. This feature provides a customizable solution by enabling users to choose the level of data decentralization based on specific health care settings or project needs, making federated learning more adaptable and efficient. By using an ecosystem-based collaborative learning strategy, FL4E encourages a comprehensive platform for managing real-world data, enhancing collaboration and knowledge sharing among its stakeholders. RESULTS: Evaluating FL4E's effectiveness using real-world health care data sets has highlighted its ecosystem-oriented and inclusive design. By applying hybrid models to 2 distinct analytical tasks-classification and survival analysis-within real-world settings, we have effectively measured the "degree of federation" across various contexts. These evaluations show that FL4E's hybrid models not only match the performance of fully federated models but also avoid the substantial overhead usually linked with these models. Achieving this balance greatly enhances collaborative initiatives and broadens the scope of analytical possibilities within the ecosystem. CONCLUSIONS: FL4E represents a significant step forward in collaborative clinical research by merging the benefits of centralized and federated learning. Its modular ecosystem-based design and the "degree of federation" feature make it an inclusive, customizable framework suitable for a wide array of clinical research scenarios, promising to revolutionize the field through improved collaboration and data use. Detailed implementation and analyses are available on the associated GitHub repository.

2.
NPJ Digit Med ; 7(1): 200, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39075240

RESUMO

Multiple myeloma management requires a balance between maximizing survival, minimizing adverse events to therapy, and monitoring disease progression. While previous work has proposed data-driven models for individual tasks, these approaches fail to provide a holistic view of a patient's disease state, limiting their utility to assist physician decision-making. To address this limitation, we developed a transformer-based machine learning model that jointly (1) predicts progression-free survival (PFS), overall survival (OS), and adverse events (AE), (2) forecasts key disease biomarkers, and (3) assesses the effect of different treatment strategies, e.g., ixazomib, lenalidomide, dexamethasone (IRd) vs lenalidomide, dexamethasone (Rd). Using TOURMALINE trial data, we trained and internally validated our model on newly diagnosed myeloma patients (N = 703) and externally validated it on relapsed and refractory myeloma patients (N = 720). Our model achieved superior performance to a risk model based on the multiple myeloma international staging system (ISS) (p < 0.001, Bonferroni corrected) and comparable performance to survival models trained separately on each task, but unable to forecast biomarkers. Our approach outperformed state-of-the-art deep learning models, tailored towards forecasting, on predicting key disease biomarkers (p < 0.001, Bonferroni corrected). Finally, leveraging our model's capacity to estimate individual-level treatment effects, we found that patients with IgA kappa myeloma appear to benefit the most from IRd. Our study suggests that a holistic assessment of a patient's myeloma course is possible, potentially serving as the foundation for a personalized decision support system.

3.
PLOS Digit Health ; 3(7): e0000533, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39052668

RESUMO

BACKGROUND: Disability progression is a key milestone in the disease evolution of people with multiple sclerosis (PwMS). Prediction models of the probability of disability progression have not yet reached the level of trust needed to be adopted in the clinic. A common benchmark to assess model development in multiple sclerosis is also currently lacking. METHODS: Data of adult PwMS with a follow-up of at least three years from 146 MS centers, spread over 40 countries and collected by the MSBase consortium was used. With basic inclusion criteria for quality requirements, it represents a total of 15, 240 PwMS. External validation was performed and repeated five times to assess the significance of the results. Transparent Reporting for Individual Prognosis Or Diagnosis (TRIPOD) guidelines were followed. Confirmed disability progression after two years was predicted, with a confirmation window of six months. Only routinely collected variables were used such as the expanded disability status scale, treatment, relapse information, and MS course. To learn the probability of disability progression, state-of-the-art machine learning models were investigated. The discrimination performance of the models is evaluated with the area under the receiver operator curve (ROC-AUC) and under the precision recall curve (AUC-PR), and their calibration via the Brier score and the expected calibration error. All our preprocessing and model code are available at https://gitlab.com/edebrouwer/ms_benchmark, making this task an ideal benchmark for predicting disability progression in MS. FINDINGS: Machine learning models achieved a ROC-AUC of 0⋅71 ± 0⋅01, an AUC-PR of 0⋅26 ± 0⋅02, a Brier score of 0⋅1 ± 0⋅01 and an expected calibration error of 0⋅07 ± 0⋅04. The history of disability progression was identified as being more predictive for future disability progression than the treatment or relapses history. CONCLUSIONS: Good discrimination and calibration performance on an external validation set is achieved, using only routinely collected variables. This suggests machine-learning models can reliably inform clinicians about the future occurrence of progression and are mature for a clinical impact study.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA