Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Phytother Res ; 2024 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-38923111

RESUMO

Colorectal cancer (CRC) is one of the most common malignant tumours worldwide. Diarylheptanoids, secondary metabolites isolated from Zostera marina, are of interest in natural products research due to their biological activities. Zosterabisphenone B (ZBP B) has recently been shown to inhibit the viability of CRC cells. The aim of this study was to investigate the therapeutic potential of ZBP B for targeting human CRC cells. Cell viability was determined using the MTT assay. Flow cytometry and Western blot analyses were used to assess apoptosis and autophagy. A CRC xenograft model was used to evaluate the in vivo effect of ZBP B. No cytotoxic effect on HCEC cells was observed in the in vitro experiments. ZBP B caused morphological changes in HCT116 colon cancer cells due to an increase in early and late apoptotic cell populations. Mechanistically, ZBP B led to an increase in cleaved caspase-3, caspase-8, caspase-9, PARP and BID proteins and a decrease in Bcl-2 and c-Myc proteins. In the xenograft model of CRC, ZBP B led to a reduction in tumour growth. These results indicate that ZBP B exerts a selective cytotoxic effect on CRC cells by affecting apoptotic signalling pathways and reducing tumour growth in mice. Taken together, our results suggest that ZBP B could be a lead compound for the synthesis and development of CRC drugs.

2.
Mar Drugs ; 21(2)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36827099

RESUMO

Analysis of extracts of the marine sponge Clathria faviformis by high-resolution LC-MS2 and molecular networking resulted in the discovery of a new family of potentially UV-protecting phospholipids, the favilipids. One of them, favilipid A (1), was isolated and its structure determined by mass and tandem mass spectrometry, NMR, electronic circular dichroism (ECD), and computational studies. Favilipid A, which has no close analogues among natural products, possesses an unprecedented structure characterized by a 4-aminodihydropiridinium core, resulting in UV-absorbing properties that are very unusual for a phospholipid. Consequently, favilipid A could inspire the development of a new class of molecules to be used as sunscreen ingredients. In addition, favilipid A inhibited by 58-48% three kinases (JAK3, IKKß, and SYK) involved in the regulation of the immune system, suggesting a potential use for treatment of autoimmune diseases, hematologic cancers, and other inflammatory states.


Assuntos
Produtos Biológicos , Poríferos , Animais , Poríferos/química , Produtos Biológicos/química , Espectrometria de Massas em Tandem , Estrutura Molecular
3.
J Nat Prod ; 85(10): 2468-2473, 2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-36261887

RESUMO

The widespread seagrass Zostera marina contains a new diarylheptanoid heterodimer, zosterabisphenone C (1), featuring an unprecedented rearrangement of one of its benzene rings to a cyclopentenecarbonyl unit. The planar structure and absolute configuration of zosterabisphenone C were elucidated by a combination of spectroscopic (MS, ECD, and low-temperature NMR) and computational (DFT-NMR and DFT-ECD) evidence. Consistent with the previously isolated zosterabisphenones, compound 1 was selectively cytotoxic against HCT 116 adenocarcinoma colon cancer cells, reducing their viability by 73% at 10 µM (IC50 of 7.6 ± 1.1 µM). The biosynthetic origin of zosterabisphenone C (1) from an oxidative rearrangement of zosterabisphenone A (4) is proposed.


Assuntos
Antineoplásicos , Neoplasias do Colo , Zosteraceae , Diarileptanoides/farmacologia , Benzeno
4.
Phytother Res ; 36(10): 4002-4013, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36222190

RESUMO

Olive tree leaves are an abundant source of bioactive compounds with several beneficial effects for human health, including a protective role against many types of cancer. In this study, we investigated the effect of an extract, obtained from olive tree (Olea europaea L.) leaves (OLE), on proliferation, invasion, and epithelial to mesenchymal transition (EMT) on metastatic melanoma, the highly aggressive form of skin cancer and the deadliest diseases. Our results demonstrated that OLE inhibited melanoma cells proliferation through cell cycle arrest and induction of apoptotic cell death. Moreover, OLE suppressed the migration, invasion, and colonies formation of human melanoma cells. Similar to our in vitro findings, we demonstrated that the oral administration of OLE inhibited cutaneous tumor growth and lung metastasis formation in vivo by modulating the expression of EMT related factors. In addition, the anti-proliferative and anti-invasive effects of OLE against melanoma were also related to a simultaneous targeting of mitogen-activated protein kinase and PI3K pathways, both in vitro and in vivo. In conclusion, our findings suggest that OLE has the potential to inhibit the metastatic spread of melanoma cells thanks to its multifaceted mechanistic effects, and may represent a new add-on therapy for the management of metastatic melanoma.


Assuntos
Melanoma , Olea , Transição Epitelial-Mesenquimal , Humanos , Melanoma/tratamento farmacológico , Proteínas Quinases Ativadas por Mitógeno , Fosfatidilinositol 3-Quinases , Extratos Vegetais/farmacologia , Folhas de Planta
5.
Phytother Res ; 35(3): 1432-1442, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33058354

RESUMO

Malignant melanoma is the deadliest skin cancer, due to its propensity to metastasize. MAPKs and NF-κB pathways are constitutively activated in melanoma and promote cell proliferation, cell invasion, metastasis formation, and resistance to therapeutic regimens. Thus, they represent potential targets for melanoma prevention and treatment. Phytochemicals are gaining considerable attention for the management of melanoma because of their several cellular and molecular targets. A screening of a small library of sesquiterpenes lactones selected cynaropicrin, isolated from the aerial parts of Centaurea drabifolia subsp. detonsa, for its potential anticancer effect against melanoma cells. Treatment of human melanoma cells A375 with cynaropicrin resulted in inhibition of cell proliferation and induction of caspase-3-dependent apoptosis. Furthermore, cynaropicrin reduced several cellular malignant features such migration, invasion, and colonies formation through the inhibition of ERK1/2 and NF-κB activity. Cynaropicrin was able to reduce intracellular reactive oxygen species generation, which are involved in all the stages of carcinogenesis. Indeed, cynaropicrin increased the expression of several antioxidant genes, such as glutamate-cysteine ligase and heme oxygenase-1, by promoting the activation of the transcription factor Nrf-2. In conclusion, our results individuate cynaropicrin as a potential adjuvant chemotherapeutic agent for melanoma by targeting several protumorigenic signaling pathways.


Assuntos
Lactonas/uso terapêutico , Melanoma/tratamento farmacológico , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Sesquiterpenos/uso terapêutico , Apoptose , Proliferação de Células , Progressão da Doença , Humanos , Lactonas/farmacologia , Sesquiterpenos/farmacologia , Transdução de Sinais
6.
Mar Drugs ; 17(1)2019 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-30621025

RESUMO

Natural compounds derived from marine organisms exhibit a wide variety of biological activities. Over the last decades, a great interest has been focused on the anti-tumour role of sponges and algae that constitute the major source of these bioactive metabolites. A substantial number of chemically different structures from different species have demonstrated inhibition of tumour growth and progression by inducing apoptosis in several types of human cancer. The molecular mechanisms by which marine natural products activate apoptosis mainly include (1) a dysregulation of the mitochondrial pathway; (2) the activation of caspases; and/or (3) increase of death signals through transmembrane death receptors. This great variety of mechanisms of action may help to overcome the multitude of resistances exhibited by different tumour specimens. Therefore, products from marine organisms and their synthetic derivates might represent promising sources for new anticancer drugs, both as single agents or as co-adjuvants with other chemotherapeutics. This review will focus on some selected bioactive molecules from sponges and algae with pro-apoptotic potential in tumour cells.


Assuntos
Apoptose/efeitos dos fármacos , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Phaeophyceae/química , Poríferos/química , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Organismos Aquáticos/química , Humanos , Neoplasias/tratamento farmacológico
7.
Pharmacol Res ; 114: 67-73, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27777130

RESUMO

Inflammation plays a key role in tumor promotion and development. Indeed, cyclooxygenase-2 (COX-2) expression is strongly associated with different types of cancer. An emerging class of compounds with significant anti-inflammatory properties is the hydrogen sulfide-releasing non-steroidal anti-inflammatory drugs (H2S-NSAIDs). They consist of a traditional NSAID to which an H2S-releasing moiety is covalently attached. We have recently demonstrated that H2S donors inhibit melanoma cell proliferation. In the current study, we evaluated the potential beneficial effects of a new H2S-releasing derivative of naproxen, ATB-346 [2-(6-methoxynapthalen-2-yl)-propionic acid 4-thiocarbamoyl phenyl ester] which inhibits COX activity but also releases H2S. We used cell culture and a mouse melanoma model to evaluate the effect of ATB-346 on: i) in vitro growth of human melanoma cells; ii) in vivo melanoma development in mice. Cell culture studies demonstrated that ATB-346 reduced the in vitro proliferation of human melanoma cells and this effect was associated to induction of apoptosis and inhibition of NF-κB activation. Moreover, ATB-346 had novel Akt signaling inhibitory properties. Daily oral dosing of ATB-346 (43µmol/kg) significantly reduced melanoma development in vivo. This study shows that ATB-346, a novel H2S-NSAID, inhibits human melanoma cell proliferation by inhibiting pro-survival pathways associated with NF-κB and Akt activation. Furthermore, oral treatment with ATB-346 inhibits melanoma growth in mice. In conclusion, the combination of inhibition of cyclooxygenase and delivery of H2S by ATB-346 may offer a promising alternative to existing therapies for melanoma.


Assuntos
Anti-Inflamatórios não Esteroides/uso terapêutico , Antineoplásicos/uso terapêutico , Melanoma/tratamento farmacológico , Naproxeno/análogos & derivados , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Quimiocinas/imunologia , Feminino , Humanos , Sulfeto de Hidrogênio/imunologia , Melanoma/imunologia , Melanoma/patologia , Camundongos Endogâmicos C57BL , NF-kappa B/imunologia , Naproxeno/farmacologia , Naproxeno/uso terapêutico
8.
Nutrients ; 16(12)2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38931182

RESUMO

Hyperlipidaemia is a recognised risk factor for cardiovascular disease. In this study, the antihyperlipidaemic properties of spirulina (Arthrospira platensis, strain S2 from Serbia) were tested in adult Wistar rats before and after induction of hypercholesterolaemia by a high-fat diet (HFD) to compare the preventive with the curative effect. Total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), alanine transaminase (ALT) and aspartate transaminase (AST) levels were measured in the blood samples. The chemical composition (lipids, proteins and cholesterol) and the content of bile acids in the faeces of the animals were also analysed. Feeding rats with an atherogenic diet for 10 weeks led to the successful development of hyperlipidaemia, as serum TC and LDL-C levels as well as lipids, cholesterol and bile acids in the animals' faeces were significantly increased. Pre- and post-treatment with spirulina led to a reduction in serum LDL, TC and ALT levels. Administration of spirulina resulted in both a significant increase in primary bile acids excretion and a decrease in bile acids metabolism, with pre-treatment being more effective than post-treatment in some cases. These results suggest that increased excretion of bile acids as well as an effect on the gut microbiota may be the mechanism responsible for the anti-hyperlipidaemic activity of the tested spirulina strain.


Assuntos
Ácidos e Sais Biliares , Dieta Hiperlipídica , Fezes , Hipercolesterolemia , Ratos Wistar , Spirulina , Animais , Dieta Hiperlipídica/efeitos adversos , Hipercolesterolemia/etiologia , Ácidos e Sais Biliares/metabolismo , Masculino , Fezes/microbiologia , Fezes/química , Ratos , Colesterol/sangue , LDL-Colesterol/sangue , Probióticos/farmacologia , Aspartato Aminotransferases/sangue , Alanina Transaminase/sangue , HDL-Colesterol/sangue , Lipídeos/sangue , Modelos Animais de Doenças
9.
Biomed Pharmacother ; 168: 115788, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37913731

RESUMO

Parkinson's Disease (PD), a neurodegenerative disorder, is characterized by the degeneration of progressive dopaminergic (DA) neurons in the substantia nigra region of the human midbrain. Although just what causes PD remains a mystery, it is known that oxidative stress (OS) as well as mitochondrial dysfunction, neuro-inflammation, and insufficient neurotrophic support play a role in the disease's pathophysiology. Phytochemicals are a diverse small molecule group derived from plants that can be classified into numerous classes on the basis of their biological activities and chemical structure. Of these groups of phytochemicals, the most abundant, which has well-established anti-Parkinson's effects, are polyphenols. Flavonoids, including naringin and naringenin, genistein, kaempferol, anthocyanins, epigallocatechin-3-gallate, and baicalein are plant-based biologically active polyphenols, which have been shown to exhibit therapeutic potential when used as treatment for a variety of pathological illnesses, such as neurodegenerative diseases (NDs) and PD. Recently, it was reported that flavonoids have beneficial effects on PD, such as the protection of DA neurons, improvement of motor and cognitive abilities, regulation of signaling pathways, and modulation of OS and neuro-inflammation. In addition, by changing the composition of bacteria in gut microbiota, flavonoids reduce pathogenic strains and promote the growth of beneficial strains. In this context, the current paper will provide a literature review on the neurological roles that flavonoids play, as one of the most abundant phytochemical families, in PD.


Assuntos
Microbioma Gastrointestinal , Doença de Parkinson , Humanos , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Flavonoides/metabolismo , Doença de Parkinson/metabolismo , Antocianinas/farmacologia , Polifenóis/farmacologia , Polifenóis/uso terapêutico , Polifenóis/metabolismo , Inflamação/metabolismo , Neurônios Dopaminérgicos
10.
J Ethnopharmacol ; 311: 116391, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-36948263

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Chamomile (M. chamomilla L.) is an herbaceous plant from family Astereaceae, that has a long history of use in traditional medicine. It has been used as herbal remedies for thousands of years to treat several diseases, including infections, neuropsychiatric, respiratory, gastrointestinal, and liver disorders. Chronic inflammation is involved in the pathogenesis of most infectious and non-infectious diseases and macrophages are considered the major cellular players that drive disease initiation and maintenance. AIM OF THE STUDY: The aim of this study was to evaluate the variation in the chemical profile of the essential oil of M. chamomilla plants collected in three experimental field sites in the Molise region. Additionally, we evaluated the pharmacological mechanism behind the anti-inflammatory effect of M. chamomilla essential oils. MATERIAL AND METHODS: Three essential oils (called GC1, GC2 and GC3) were extracted from aerial parts of M. chamomilla by hydrodistillation and chemical composition was analyzed by gas chromatography-mass spectrometry (GC-MS). The essential oils were tested for their ability to modulate pro-inflammatory murine macrophages and human peripheral blood mononuclear cells (PBMCs) functions. RESULTS: The chemical analysis of the samples revealed the presence of a high content of the oxygenated sesquiterpenes that represented more than the half of the entire oils. GC1, GC2 and GC3 essential oils significantly attenuated LPS/IFN-γ-induced inflammation by reducing M1 polarization. In details, they showed significant anti-inflammatory property by inhibiting NO, TNF-α and IL-6 production. These effects were correlated to a suppression of LPS-mediated p65 activation, the critical transactivation subunit for NF-κB transcription factor. Oxidative stress may trigger macrophages activation and elicit strong immune responses. Our study demonstrated that GC1, GC2 and GC3 were highly effective at increasing GCL and HMOX-1 anti-oxidant enzymes expression leading to the rapid scavenging of ROS. The antioxidant activity of these oils was explained throughout the activation of NRF2 signaling pathway. Next, we demonstrated that essential oils were able to reduce CD4+ T cell activation which are also involved in inflammatory processes. CONCLUSIONS: Our data describe for the first time that chamomile essential oils exerted their anti-inflammatory and antioxidant activity by modulating macrophages and CD4+ T cells-mediate immune response.


Assuntos
Óleos Voláteis , Humanos , Animais , Camundongos , Óleos Voláteis/farmacologia , Óleos Voláteis/uso terapêutico , Óleos Voláteis/análise , Camomila , Leucócitos Mononucleares , Antioxidantes/farmacologia , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Macrófagos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/análise , Inflamação/tratamento farmacológico
11.
Br J Pharmacol ; 180(2): 235-251, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36168728

RESUMO

BACKGROUND AND PURPOSE: Transient receptor potential melastatin type-8 (TRPM8) is a cold-sensitive cation channel protein belonging to the TRP superfamily of ion channels. Here, we reveal the molecular mechanism of TRPM8 and its clinical relevance in colorectal cancer (CRC). EXPERIMENTAL APPROACH: TRPM8 expression and its correlation with the survival rate of CRC patients was analysed. To identify the key pathways and genes related to TRPM8 high expression, Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were conducted in CRC patients. TRPM8 functional role was assessed by using Trpm8-/- mice in models of sporadic and colitis-associated colon cancer. TRPM8 pharmacological targeting by WS12 was evaluated in murine models of CRC. KEY RESULTS: TRPM8 is overexpressed in colon primary tumours and in CD326+ tumour cell fraction. TRPM8 high expression was related to lower survival rate of CRC patients, Wnt-Frizzled signalling hyperactivation and adenomatous polyposis coli down-regulation. In sporadic and colitis-associated models of colon cancer, either absence or pharmacological desensitization of TRPM8 reduced tumour development via inhibition of the oncogenic Wnt/ß-catenin signalling. TRPM8 pharmacological blockade reduced tumour growth in CRC xenograft mice by reducing the transcription of Wnt signalling regulators and the activation of ß-catenin and its target oncogenes such as C-Myc and Cyclin D1. CONCLUSION AND IMPLICATIONS: Human data provide valuable insights to propose TRPM8 as a prognostic marker with a negative predictive value for CRC patient survival. Animal experiments demonstrate TRPM8 involvement in colon cancer pathophysiology and its potential as a drug target for CRC.


Assuntos
Neoplasias Colorretais , Canais de Cátion TRPM , Via de Sinalização Wnt , Animais , Humanos , Camundongos , beta Catenina/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Colorretais/metabolismo , Regulação Neoplásica da Expressão Gênica , Proteínas de Membrana/metabolismo , Prognóstico , Canais de Cátion TRPM/genética , Canais de Cátion TRPM/metabolismo , Via de Sinalização Wnt/genética
12.
Front Immunol ; 11: 1680, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32849585

RESUMO

Suppression of antitumor immune responses is one of the main mechanisms by which tumor cells escape from destruction by the immune system. Myeloid-derived suppressor cells (MDSCs) represent the main immunosuppressive cells present in the tumor microenvironment (TME) that sustain cancer progression. MDSCs are a heterogeneous group of immature myeloid cells with a potent activity against T-cell. Studies in mice have demonstrated that MDSCs accumulate in several types of cancer where they promote invasion, angiogenesis, and metastasis formation and inhibit antitumor immunity. In addition, different clinical studies have shown that MDSCs levels in the peripheral blood of cancer patients correlates with tumor burden, stage and with poor prognosis in multiple malignancies. Thus, MDSCs are the major obstacle to many cancer immunotherapies and their targeting may be a beneficial strategy for improvement the efficiency of immunotherapeutic interventions. However, the great heterogeneity of these cells makes their identification in human cancer very challenging. Since both the phenotype and mechanisms of action of MDSCs appear to be tumor-dependent, it is important to accurately characterized the precise MDSC subsets that have clinical relevance in each tumor environment to more efficiently target them. In this review we summarize the phenotype and the suppressive mechanisms of MDSCs populations expanded within different tumor contexts. Further, we discuss about their clinical relevance for cancer diagnosis and therapy.


Assuntos
Antineoplásicos Imunológicos/uso terapêutico , Imunoterapia , Células Supressoras Mieloides/efeitos dos fármacos , Neoplasias/terapia , Evasão Tumoral , Microambiente Tumoral , Animais , Feminino , Humanos , Masculino , Células Supressoras Mieloides/imunologia , Células Supressoras Mieloides/metabolismo , Neoplasias/imunologia , Neoplasias/metabolismo , Neoplasias/patologia , Fenótipo
13.
Nutrients ; 12(12)2020 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-33260769

RESUMO

Olive tree (Olea europaea L.) leaves are an abundant source of bioactive compounds with several beneficial effects for human health. Recently, the effect of olive leaf extract in obesity has been studied. However, the molecular mechanism in preventing obesity-related inflammation has not been elucidated. Obesity is a state of chronic low-grade inflammation and is associated with an increase of pro-inflammatory M1 macrophages infiltration in the adipose tissue. In the current study, we explored Olea europaea L. leaf extract (OLE) anti-inflammatory activity using an in vitro model of obesity-induced inflammation obtained by stimulating murine macrophages RAW 264.7 with high dose of the free fatty acid palmitate. We found that OLE significantly suppressed the induction of pro-inflammatory mediators, tumor necrosis factor (TNF)-α, interleukin (IL)-6, IL-1ß, nitric oxide (NO), prostaglandin E2 (PGE2) and reactive oxygen species (ROS), while it enhanced the anti-inflammatory cytokine, IL-10. Moreover, we demonstrated that OLE reduced the oxidative stress induced by palmitate in macrophages by regulating the NF-E2-related factor 2 (NRF2)-Kelch-like ECH-associated protein 1 (KEAP1) pathway. Finally, we showed that OLE promoted the shift of M1 macrophage toward less inflammatory M2-cells via the modulation of the associated NF-κB and proliferator-activated receptor gamma (PPARγ) signaling pathways. Thereby, our findings shed light on the potential therapeutic feature of OLE in recovering obesity-associated inflammation via regulating M1/M2 status.


Assuntos
Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Olea/química , Palmitatos/toxicidade , Extratos Vegetais/farmacologia , Folhas de Planta/química , Animais , Citocinas/genética , Citocinas/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Inflamação/metabolismo , Macrófagos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Extratos Vegetais/química , Células RAW 264.7
14.
Br J Pharmacol ; 177(4): 884-897, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31392723

RESUMO

BACKGROUND AND PURPOSE: Myeloid-derived suppressor cells (MDSCs) represent a major obstacle to cancer treatment, as they negatively regulate anti-tumour immunity through the suppression of tumour-specific T lymphocytes. Thus, the efficacy of immunotherapies may be improved by targeting MDSCs. In this study, we assessed the ability of hydrogen sulfide (H2 S), a gasotransmitter whose anti-cancer effects are well known, to inhibit the accumulation and immunosuppressive functions of MDSCs in melanoma. EXPERIMENTAL APPROACH: Effects of H2 S on the host immune response to cancer were evaluated using an in vivo syngeneic model of murine melanoma. B16F10-melanoma-bearing mice were treated with the H2 S donor, diallyl trisulfide (DATS) and analysed for content of MDSCs, dendritic cells (DCs) and T cells. Effects of H2 S on expression of immunosuppressive genes in MDSCs and on T cell proliferation were evaluated. KEY RESULTS: In melanoma-bearing mice, DATS inhibited tumour growth, and this effect was associated with a reduction in the frequency of MDSCs in the spleen, in the blood as well as in the tumour micro-environment. In addition, we found that CD8+ T cells and DCs were increased. Furthermore, DATS reduced the immuno-suppressive activity of MDSCs, restoring T cell proliferation. CONCLUSIONS AND IMPLICATIONS: The H2 S donor compound, DATS, inhibited the expansion and the suppressive functions of MDSCs, suggesting a novel role for H2 S as a modulator of MDSCs in cancer. Therefore, H2 S donors may provide a novel approach for enhancing the efficacy of melanoma immunotherapy. LINKED ARTICLES: This article is part of a themed section on Hydrogen Sulfide in Biology & Medicine. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.4/issuetoc.


Assuntos
Sulfeto de Hidrogênio , Melanoma , Células Supressoras Mieloides , Animais , Linfócitos T CD8-Positivos , Imunoterapia , Camundongos , Microambiente Tumoral
15.
Nutrients ; 11(7)2019 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-31277273

RESUMO

Breast cancer (BC) is the second most common cancer worldwide and the most commonly occurring malignancy in women. There is growing evidence that lifestyle factors, including diet, body weight and physical activity, may be associated with higher BC risk. However, the effect of dietary factors on BC recurrence and mortality is not clearly understood. Here, we provide an overview of the current evidence obtained from the PubMed databases in the last decade, assessing dietary patterns, as well as the consumption of specific food-stuffs/food-nutrients, in relation to BC incidence, recurrence and survival. Data from the published literature suggest that a healthy dietary pattern characterized by high intake of unrefined cereals, vegetables, fruit, nuts and olive oil, and a moderate/low consumption of saturated fatty acids and red meat, might improve overall survival after diagnosis of BC. BC patients undergoing chemotherapy and/or radiotherapy experience a variety of symptoms that worsen patient quality of life. Studies investigating nutritional interventions during BC treatment have shown that nutritional counselling and supplementation with some dietary constituents, such as EPA and/or DHA, might be useful in limiting drug-induced side effects, as well as in enhancing therapeutic efficacy. Therefore, nutritional intervention in BC patients may be considered an integral part of the multimodal therapeutic approach. However, further research utilizing dietary interventions in large clinical trials is required to definitively establish effective interventions in these patients, to improve long-term survival and quality of life.


Assuntos
Neoplasias da Mama/dietoterapia , Neoplasias da Mama/prevenção & controle , Dieta Saudável , Dieta/efeitos adversos , Valor Nutritivo , Comportamento de Redução do Risco , Adulto , Neoplasias da Mama/epidemiologia , Feminino , Humanos , Pessoa de Meia-Idade , Estado Nutricional , Prognóstico , Fatores de Proteção , Recomendações Nutricionais , Medição de Risco , Fatores de Risco
16.
Front Pharmacol ; 10: 1456, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31920649

RESUMO

CRISPR/Cas9 has become a powerful method to engineer genomes and to activate or to repress genes expression. As such, in cancer research CRISPR/Cas9 technology represents an efficient tool to dissect mechanisms of tumorigenesis and to discover novel targets for drug development. Here, we employed the CRISPR/Cas9 technology for studying the role of prostaglandin-endoperoxide synthase 2 (PTGS2) in melanoma development and progression. Melanoma is the most aggressive form of skin cancer with a median survival of less than 1 year. Although oncogene-targeted drugs and immune checkpoint inhibitors have demonstrated a significant success in improving overall survival in patients, related toxicity and emerging resistance are ongoing challenges. Gene therapy appears to be an appealing option to enhance the efficacy of currently available melanoma therapeutics leading to better patient prognosis. Several gene therapy targets have been identified and have proven to be effective against melanoma cells. Particularly, PTGS2 is frequently expressed in malignant melanomas and its expression significantly correlates with poor survival in patients. In this study we investigated on the effect of ptgs2 knockdown in B16F10 murine melanoma cells. Our results show that reduced expression of ptgs2 in melanoma cells: i) inhibits cell proliferation, migration, and invasiveness; ii) modulates immune response by impairing myeloid derived suppressor cell differentiation; iii) reduces tumor development and metastasis in vivo. Collectively, these findings indicate that ptgs2 could represent an ideal gene to be targeted to improve success rates in the development of new and highly selective drugs for melanoma treatment.

17.
Front Pharmacol ; 10: 66, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30800067

RESUMO

The beneficial effects of H2S-release and of COXs-inhibition have been exploited in the design of novel anti-inflammatory drugs, the H2S-releasing non-steroidal anti-inflammatory drugs (H2S-NSAIDs), showing promising potential for chemoprevention in cancers. Here, we evaluated the efficacy of a new H2S-releasing derivative of naproxen, named naproxen-4-hydroxybenzodithioate (naproxen-HBTA), in reducing metastatic melanoma features, both in vitro and in vivo. The novel H2S donor has been prepared following a synthetic scheme that provided high yields and purity. In particular, we investigated the effect of naproxen-HBTA in vitro on several metastatic features of human melanoma cells such as proliferation, migration, invasion, and colonies formation and in vivo in a model of cutaneous melanoma. Cell culture studies demonstrated that naproxen-HBTA induced caspase 3-mediated apoptosis and inhibited motility, invasiveness, and focus formation. Finally, daily oral treatment with naproxen-HBTA significantly suppressed melanoma growth and progression in mice. In conclusion, by using this dual approach we propose that the COX-2 and H2S pathways could be regarded as novel therapeutic targets/tools to generate new treatment options based on "combination therapy" for melanoma.

18.
Front Immunol ; 9: 499, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29636751

RESUMO

Chronic inflammation contributes to tumor initiation in colitis-associated colorectal cancer (CRC). Indeed, inflammatory bowel disease (IBD) patients show an increased risk of developing CRC. Cancer immune evasion is a major issue in CRC and preclinical and clinical evidence has defined a critical role for myeloid-derived suppressor cells (MDSCs) that contribute to tumor growth and progression by suppressing T-cells and modulating innate immune responses. MDSCs comprise a heterogeneous population of immature myeloid cells that can be distinct in two subtypes: CD11b+Ly6G+Ly6Clow with granulocytic phenotype (G-MDSCs) and CD11b+Ly6G-Ly6Chigh with monocytic phenotype (M-MDSCs). Hydrogen sulfide (H2S) is an endogenous gaseous signaling molecule that regulates various physiological and pathophysiological functions. In particular, several studies support its anti-inflammatory activity in experimental colitis and ulcer. However, the role of the H2S pathway in innate immune-mediated IBD has not yet been elucidated. To better define a possible link between MDSCs and H2S pathway in colitis-associated CRC development, we used an innate immune-mediated IBD model induced by infection with the bacterium Helicobacter hepaticus (Hh), closely resembling human IBD. Here, we demonstrated an involvement of MDSCs in colitis development. A significant time-dependent increase of both G-MDSCs and M-MDSCs was observed in the colon and in the spleen of Hh-infected mice. Following, we observed that chronic oral administration of the H2S donor DATS reduced colon inflammation by limiting the recruitment of G-MDSCs in the colon of Hh-infected mice. Thus, we identify the metabolic pathway l-cysteine/H2S as a possible new player in the immunosuppressive mechanism responsible for the MDSCs-promoted colitis-associated cancer development.


Assuntos
Colite/imunologia , Infecções por Helicobacter/imunologia , Helicobacter hepaticus/imunologia , Sulfeto de Hidrogênio/farmacologia , Imunidade Celular/efeitos dos fármacos , Células Supressoras Mieloides/imunologia , Animais , Colite/genética , Colite/microbiologia , Colite/patologia , Colo/imunologia , Colo/microbiologia , Colo/patologia , Modelos Animais de Doenças , Infecções por Helicobacter/patologia , Inflamação/genética , Inflamação/imunologia , Inflamação/microbiologia , Inflamação/patologia , Camundongos , Camundongos Knockout , Células Supressoras Mieloides/patologia
19.
Biochem Pharmacol ; 156: 52-59, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30098313

RESUMO

Malignant melanoma is one of the most leading form of skin cancer associated with a low patient survival rate. Increasing evidence revealed that microRNAs (miRNAs) play a crucial role in the occurrence and development of several form of cancer including melanoma. In this study, we aimed at investigating the expression and role of miR-143-3p in human malignant melanoma. Our results showed that the expression of miR-143-3p was lower in human melanoma cells, as well as human biopsy specimens, when compared to normal human melanocytes. Ectopic expression of miR-143-3p in human melanoma cells inhibited proliferation, migration, invasion and promoted apoptosis acting through a molecular mechanism that, at least in part, is dependent on inhibition of cyclooxygenase-2 (COX-2) gene. Collectively, these results demonstrate that miR-143-3p could represent at the same time, a new early diagnostic marker and therapeutic target acting as tumor suppressor in melanoma cancer.


Assuntos
Ciclo-Oxigenase 2/metabolismo , Melanoma/metabolismo , MicroRNAs/farmacologia , Apoptose , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Ciclo-Oxigenase 2/genética , Regulação para Baixo , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Invasividade Neoplásica
20.
Fitoterapia ; 125: 13-17, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29242038

RESUMO

Vitis vinifera cv Falanghina is an ancient grape variety of Southern Italy. A thorough phytochemical analysis of the Falanghina leaves was conducted to investigate its specialised metabolite content. Along with already known molecules, such as caftaric acid, quercetin-3-O-ß-d-glucopyranoside, quercetin-3-O-ß-d-glucuronide, kaempferol-3-O-ß-d-glucopyranoside and kaempferol-3-O-ß-d-glucuronide, a previously undescribed biflavonoid was identified. For this last compound, a moderate bioactivity against metastatic melanoma cells proliferation was discovered. This datum can be of some interest to researchers studying human melanoma. The high content in antioxidant glycosylated flavonoids supports the exploitation of grape vine leaves as an inexpensive source of natural products for the food industry and for both pharmaceutical and nutraceutical companies. Additionally, this study offers important insights into the plant physiology, thus prompting possible technological researches of genetic selection based on the vine adaptation to specific pedo-climatic environments.


Assuntos
Antineoplásicos Fitogênicos/isolamento & purificação , Biflavonoides/isolamento & purificação , Folhas de Planta/química , Vitis/química , Antineoplásicos Fitogênicos/farmacologia , Biflavonoides/farmacologia , Linhagem Celular Tumoral , Humanos , Itália , Melanoma , Estrutura Molecular , Compostos Fitoquímicos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA