Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Antimicrob Agents Chemother ; 58(12): 7128-40, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25224012

RESUMO

The hepatitis C virus (HCV) nonstructural (NS) protein 5A is a multifunctional protein that plays a central role in viral replication and assembly. Antiviral agents directly targeting NS5A are currently in clinical development. Although the elucidation of the mechanism of action (MOA) of NS5A inhibitors has been the focus of intensive research, a detailed understanding of how these agents exert their antiviral effect is still lacking. In this study, we observed that the downregulation of NS5A hyperphosphorylation is associated with the actions of NS5A inhibitors belonging to different chemotypes. NS5A is known to recruit the lipid kinase phosphatidylinositol 4-kinase IIIα (PI4KIIIα) to the HCV-induced membranous web in order to generate phosphatidylinositol 4-phosphate (PI4P) at the sites of replication. We demonstrate that treatment with NS5A inhibitors leads to an impairment in the NS5A-PI4KIIIα complex formation that is paralleled by a significant reduction in PI4P and cholesterol levels within the endomembrane structures of HCV-replicating cells. A similar decrease in PI4P and cholesterol levels was also obtained upon treatment with a PI4KIIIα-targeting inhibitor. In addition, both the NS5A and PI4KIIIα classes of inhibitors induced similar subcellular relocalization of the NS5A protein, causing the formation of large cytoplasmic NS5A-containing clusters previously reported to be one of the hallmarks of inhibition of the action of PI4KIIIα. Because of the similarities between the effects induced by treatment with PI4KIIIα or NS5A inhibitors and the observation that agents targeting NS5A impair NS5A-PI4KIIIα complex formation, we speculate that NS5A inhibitors act by interfering with the function of the NS5A-PI4KIIIα complex.


Assuntos
Antivirais/farmacologia , Colesterol/metabolismo , Inibidores Enzimáticos/farmacologia , Hepacivirus/efeitos dos fármacos , Fosfatos de Fosfatidilinositol/antagonistas & inibidores , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Proteínas não Estruturais Virais/antagonistas & inibidores , Antivirais/química , Sítios de Ligação , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Membrana Celular/ultraestrutura , Membrana Celular/virologia , Inibidores Enzimáticos/química , Imunofluorescência , Hepacivirus/química , Hepacivirus/enzimologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/ultraestrutura , Hepatócitos/virologia , Humanos , Antígenos de Histocompatibilidade Menor , Fosfatos de Fosfatidilinositol/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/química , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Ligação Proteica/efeitos dos fármacos , Transporte Proteico , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/metabolismo
2.
J Phys Chem A ; 116(11): 2885-94, 2012 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-22360158

RESUMO

The inner shell excitation of CuPc, NiPc, and H(2)Pc phthalocyanines at both C and N K-edges has been investigated theoretically by density functional theory calculations. The selected molecules allow one to study the effect on the spectra of the presence and the nature of the atom in the central cavity of the macrocycle. The individual characteristics of the spectra can be rationalized in terms of the position of the unequivalent C and N atomic sites, showing that sensible changes are present in the spectral features deriving from the N atoms directly bound to the atom at the center of the Pc macrocycle. The minor variations present in the spectral C 1s profiles of the phthalocyanines reflect the little perturbation experienced by the peripheral atomic sites.

3.
J Phys Chem B ; 110(20): 9899-907, 2006 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-16706445

RESUMO

The potentiality of the time dependent density functional theory (TDDFT) for the description of core excitation spectra (XAS) in transition metal oxides is analyzed, considering the rutile form of TiO(2) as a test case. Cluster models are adopted to mimic the bulk, embedded within an array of point charges to simulate the Madelung potential. All of the edges, titanium and oxygen K and titanium L edges, are considered, and the TDDFT results are compared with the experimental data in order to assess the performance of the theoretical approach in dealing with this complex class of compounds. Satisfactory results have been obtained for the Ti and O K edges, while in the case of the Ti L edge some discrepancies with the experiment are still present. The configuration mixing explicitly included in the TDDFT model strongly influences the distribution of the 2p metal oscillator strength. The origin of the spectral features is investigated with the help of the partial density of the virtual states (PDOS) calculated for each core hole considered, which can be qualitatively compared with the theoretical spectra calculated in the Kohn-Sham one-electron approach.

4.
J Mol Biol ; 289(2): 371-84, 1999 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-10366511

RESUMO

The solution structure of the hepatitis C virus (BK strain) NS3 protein N-terminal domain (186 residues) has been solved by NMR spectroscopy. The protein is a serine protease with a chymotrypsin-type fold, and is involved in the maturation of the viral polyprotein. Despite the knowledge that its activity is enhanced by the action of a viral protein cofactor, NS4A, the mechanism of activation is not yet clear. The analysis of the folding in solution and the differences from the crystallographic structures allow the formulation of a model in which, in addition to the NS4A cofactor, the substrate plays an important role in the activation of the catalytic mechanism. A unique structural feature is the presence of a zinc-binding site exposed on the surface, subject to a slow conformational exchange process.


Assuntos
Hepacivirus/enzimologia , Serina Endopeptidases/química , Serina Endopeptidases/metabolismo , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/metabolismo , Sequência de Aminoácidos , Catálise , Gráficos por Computador , Sequência Conservada , Cristalografia por Raios X , Ativação Enzimática , Escherichia coli , Modelos Moleculares , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Soluções , Termodinâmica
5.
J Mol Biol ; 289(2): 385-96, 1999 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-10366512

RESUMO

The interactions of peptide inhibitors, obtained by the optimization of N-terminal cleavage products of natural substrates, with the protease of human hepatitis C virus (HCV) are characterized by NMR and modelling studies. The S-binding region of the enzyme and the bound conformation of the ligands are experimentally determined. The NMR data are then used as the experimental basis for modelling studies of the structure of the complex. The S-binding region involves the loop connecting strands E2 and F2, and appears shallow and solvent-exposed. The ligand binds in an extended conformation, forming an antiparallel beta-sheet with strand E2 of the protein, with the P1 carboxylate group in the oxyanion hole.


Assuntos
Hepacivirus/enzimologia , Serina Endopeptidases/química , Serina Endopeptidases/metabolismo , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Humanos , Ligantes , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Oligopeptídeos/química , Oligopeptídeos/farmacologia , Conformação Proteica , Estrutura Secundária de Proteína , Inibidores de Serina Proteinase/farmacologia , Soluções , Proteínas não Estruturais Virais/antagonistas & inibidores
6.
J Phys Chem B ; 109(20): 10332-40, 2005 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-16852252

RESUMO

The time dependent density functional theory (TDDFT) has been employed to calculate the X-ray absorption spectra of the alkaline-earth oxides at the metal K and L and oxygen K edges. Cluster models to mimic the bulk are considered, embedded within an array of point charges to simulate the Madelung potential. Comparison with experimental data allows a precise assessment of the performances of the method, which appears competitive and suitable to reproduce the measurements. The configuration mixing explicitly included in the TDDFT scheme appears mandatory for a correct reproduction of the oscillator strength distribution in the metal 2p spectra. The origin of the theoretical spectral features is investigated with the help of the partial density of the virtual states (PDOS) calculated for each core hole considered. The trends of the spectral features along the series are discussed in terms of the nature of the virtual final states and related to the presence of the empty nd orbitals of the metal cations. The trend of the below-edge features in the O1s excitation spectra is discussed in terms of the metal-oxygen bonding interaction.

7.
Protein Sci ; 8(7): 1445-54, 1999 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-10422832

RESUMO

Conformational changes occurring within the NS3 protease domain from the hepatitis C virus Bk strain (NS3(1-180)) under different physico-chemical conditions either in the absence or in the presence of its cofactor Pep4A were investigated by limited proteolysis experiments. Because the surface accessibility of the protein is affected by conformational changes, when comparative experiments were carried out on NS3(1-180) either at different glycerol concentrations or in the presence of Pep4A, differential peptide maps were obtained from which protein regions involved in the structural changes could be inferred. The surface topology of isolated NS3(1-180) in solution was essentially consistent with the crystal structure of the protein with the N-terminal segment showing a high conformational flexibility. At higher glycerol concentration, the protease assumed a more compact structure showing a decrease in the accessibility of the N-terminal segment that either was forced to interact with the protein or originate intermolecular interactions with neighboring molecules. Binding of the cofactor Pep4A caused the displacement of the N-terminal arm from the protein moiety, leading this segment to again adopt an open and flexible conformation, thus suggesting that the N-terminus of the protease contributes only marginally to the stability of the complex. The observed conformational changes might be directly correlated with the activation mechanism of the protease by either the cosolvent or the cofactor peptide because they lead to tighter packing of the substrate binding site.


Assuntos
Hepacivirus/enzimologia , Proteínas não Estruturais Virais/química , Sequência de Aminoácidos , Glicerol/química , Hidrólise , Espectrometria de Massas , Modelos Moleculares , Dados de Sequência Molecular , Mapeamento de Peptídeos , Conformação Proteica
8.
Protein Sci ; 7(4): 837-47, 1998 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-9568891

RESUMO

The crystal structure of the NS3 protease of the hepatitis C virus (BK strain) has been determined in the space group P6(3)22 to a resolution of 2.2 A. This protease is bound with a 14-mer peptide representing the central region of the NS4A protein. There are two molecules of the NS3(1-180)-NS4A(21'-34') complex per asymmetric unit. Each displays a familiar chymotrypsin-like fold that includes two beta-barrel domains and four short alpha-helices. The catalytic triad (Ser-139, His-57, and Asp-81) is located in the crevice between the beta-barrel domains. The NS4A peptide forms an almost completely enclosed peptide surface association with the protease. In contrast to the reported H strain complex of NS3 protease-NS4A peptide in a trigonal crystal form (Kim JL et al., 1996, Cell 87:343-355), the N-terminus of the NS3 protease is well-ordered in both molecules in the asymmetric unit of our hexagonal crystal form. The folding of the N-terminal region of the NS3 protease is due to the formation of a three-helix bundle as a result of crystal packing. When compared with the unbound structure (Love RA et al., 1996, Cell 87:331-342), the binding of the NS4A peptide leads to the ordering of the N-terminal 28 residues of the NS3 protease into a beta-strand and an alpha-helix and also causes local rearrangements important for a catalytically favorable conformation at the active site. Our analysis provides experimental support for the proposal that binding of an NS4A-mimicking peptide, which increases catalytic rates, is necessary but not sufficient for formation of a well-ordered, compact and, hence, highly active protease molecule.


Assuntos
Proteínas não Estruturais Virais/química , Sequência de Aminoácidos , Sítios de Ligação/fisiologia , Quimotripsina/química , Cristalografia por Raios X , Hepacivirus/enzimologia , Modelos Moleculares , Dados de Sequência Molecular , Peptídeos/química , Ligação Proteica/fisiologia , Conformação Proteica , Dobramento de Proteína , Estrutura Secundária de Proteína , Proteínas Virais/química
9.
Antivir Ther ; 3(Suppl 3): 99-109, 1998.
Artigo em Inglês | MEDLINE | ID: mdl-10726060

RESUMO

The hepatitis C virus (HCV) NS3 protein contains a serine proteinase domain implicated in the maturation of the viral polyprotein. NS3 forms a stable heterodimer with NS4A, a viral membrane protein that acts as an activator of the NS3 proteinase. The three-dimensional structure of the NS3 proteinase complexed with an NS4A-derived peptide has been determined. The NS3 proteinase adopts a chymotrypsin-like fold. A beta-strand contributed by NS4A is clamped between two beta-strands within the N terminus of NS3. Consistent with the requirement for extraordinarily long peptide substrates (P6-P4'), the structure of the NS3 proteinase reveals a very long, solvent-exposed substrate-binding site. The primary specificity pocket of the enzyme is shallow and closed at its bottom by Phe-154, explaining the preference of the NS3 proteinase for cysteine residues in the substrate P1 position. Another important feature of the NS3 proteinase is the presence of a tetrahedral zinc-binding site formed by residues Cys-97, Cys-99, Cys-145 and His-149. The zinc-binding site has a role in maintaining the structural stability and guiding the folding of the NS3 serine proteinase domain. Inhibition of the NS3 proteinase activity is regarded as a promising strategy to control the disease caused by HCV. Remarkably, the NS3 proteinase is susceptible to inhibition by the N-terminal cleavage products of substrate peptides corresponding to the NS4A/NS4B, NS4B/NS5A and NS5A/NS5B cleavage sites. The Ki values of the inhibitory products are lower than the K(m) values of the respective substrates and follow the order NS4A < NS5A < NS4B. Starting from the observation that the NS3 proteinase undergoes product inhibition, very potent, active site-directed inhibitors have been generated using a combinatorial peptide chemistry approach.


Assuntos
Hepacivirus/enzimologia , Serina Endopeptidases/fisiologia , Proteínas não Estruturais Virais/fisiologia , Sequência de Aminoácidos , Sítios de Ligação/efeitos dos fármacos , Ativação Enzimática , Dados de Sequência Molecular , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , RNA Helicases , Serina Endopeptidases/química , Inibidores de Serina Proteinase/farmacologia , Especificidade por Substrato , Proteínas do Envelope Viral/química , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/metabolismo , Zinco/química
10.
Clin Microbiol Infect ; 20 Suppl 5: 103-9, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24829939

RESUMO

With an estimated 3% of the world's population chronically infected, hepatitis C virus (HCV) represents a major health problem for which an efficient vaccination strategy would be highly desirable. Indeed, chronic hepatitis C is recognized as one of the major causes of cirrhosis, hepatocarcinoma and liver failure worldwide and it is the most common indication for liver transplantation, accounting for 40-50% of liver transplants. Much progress has been made in the prevention of HCV transmission and in therapeutic intervention. However, even if a new wave of directly acting antivirals promise to overcome the problems of low efficacy and adverse effects observed for the current standard of care, which include interferon-α and ribavirin, an effective vaccine would be the only means to definitively eradicate infection and to diminish the burden of HCV-related diseases at affordable costs. Although there is strong evidence that the goal of a prophylactic vaccine could be achieved, there are huge development issues that have impeded reaching this goal and that still have to be addressed. In this article we address the question of whether an HCV vaccine is needed, whether it will eventually be feasible, and why it is so difficult to produce.


Assuntos
Hepatite C Crônica/prevenção & controle , Vacinas contra Hepatite Viral/uso terapêutico , Animais , Antivirais/uso terapêutico , Ensaios Clínicos Fase I como Assunto , Ensaios Clínicos Fase II como Assunto , Modelos Animais de Doenças , Hepacivirus , Hepatite C Crônica/tratamento farmacológico , Humanos , Ensaios Clínicos Controlados Aleatórios como Assunto
13.
Phys Chem Chem Phys ; 11(8): 1146-51, 2009 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-19209356

RESUMO

The time dependent density functional theory approach has been employed to simulate the S K edge absorption spectra of model systems for the adsorption of SO(2) on TiO(2) (110) regular surface, employing cluster models to mimic the rutile surface. The spectra calculated for the adsorbate models are compared with the spectrum of the free SO(2) in order to discuss the nature of the adsorbate-substrate interaction in terms of the differences in the core excitation spectra. The comparison with the experimental NEXAFS spectra, measured at different temperatures, is satisfactory at low temperature while it reveals the difficulty of reproducing the complex experimental situations induced by the temperature increase with an adsorption model based on a perfect TiO(2) surface.


Assuntos
Análise Espectral/métodos , Dióxido de Enxofre/química , Titânio/química , Adsorção , Simulação por Computador , Modelos Moleculares , Teoria Quântica , Propriedades de Superfície , Temperatura , Raios X
14.
J Chem Phys ; 126(13): 134308, 2007 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-17430033

RESUMO

The time dependent density functional theory approach within the two-component zero-order relativistic approximation has been applied to the calculation of the core excitation spectra of SO2 molecule. The results obtained reproduce correctly the high resolution experimental spectra and allow the assignment of the spectral features both of the valence and Rydberg regions in the S 1s and O 1s spectra. For the S 2p threshold a correct description of the spin-orbit coupling as well as of the molecular field splitting appears mandatory for a reliable description of the spectrum and a detailed attribution of the complex Rydberg manifold of core excited states.

15.
Proc Natl Acad Sci U S A ; 104(44): 17335-40, 2007 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-17956988

RESUMO

Previous findings have suggested that class IIa histone deacetylases (HDACs) (HDAC4, -5, -7, and -9) are inactive on acetylated substrates, thus differing from class I and IIb enzymes. Here, we present evidence supporting this view and demonstrate that class IIa HDACs are very inefficient enzymes on standard substrates. We identified HDAC inhibitors unable to bind recombinant human HDAC4 while showing inhibition in a typical HDAC4 enzymatic assay, suggesting that the observed activity rather reflects the involvement of endogenous copurified class I HDACs. Moreover, an HDAC4 catalytic domain purified from bacteria was 1,000-fold less active than class I HDACs on standard substrates. A catalytic Tyr is conserved in all HDACs except for vertebrate class IIa enzymes where it is replaced by His. Given the high structural conservation of HDAC active sites, we predicted the class IIa His-Nepsilon2 to be too far away to functionally substitute the class I Tyr-OH in catalysis. Consistently, a Tyr-to-His mutation in class I HDACs severely reduced their activity. More importantly, a His-976-Tyr mutation in HDAC4 produced an enzyme with a catalytic efficiency 1,000-fold higher than WT, and this "gain of function phenotype" could be extended to HDAC5 and -7. We also identified trifluoroacetyl-lysine as a class IIa-specific substrate in vitro. Hence, vertebrate class IIa HDACs may have evolved to maintain low basal activities on acetyl-lysines and to efficiently process restricted sets of specific, still undiscovered natural substrates.


Assuntos
Histona Desacetilases/química , Histona Desacetilases/metabolismo , Vertebrados , Sequência de Aminoácidos , Animais , Sítios de Ligação , Catálise , Ativação Enzimática , Células HeLa , Histidina/genética , Histidina/metabolismo , Histona Desacetilases/classificação , Histona Desacetilases/genética , Humanos , Modelos Moleculares , Mutação/genética , Estrutura Terciária de Proteína , Especificidade por Substrato , Urocordados , Vertebrados/genética
16.
Phys Chem Chem Phys ; 8(37): 4300-10, 2006 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-16986073

RESUMO

We have performed Time Dependent Density Functional Theory (TDDFT) calculations employing a cluster model of the core excitation spectra of vanadium pentoxide, V(2)O(5). The excitation energies and dipole transition moments are determined for all the core edges, vanadium and oxygen K- and vanadium L-edges, treating them at the same level of accuracy. The agreement between the TDDFT theoretical spectra and the experimental data is rather good, particularly at the V and O K-edges. A quantitative reproduction of the fine pre-edge structures appears more difficult for the V L-edge. The comparison between the TDDFT results and the results obtained at the simpler one electron Kohn-Sham (KS) level indicates that the V and O K edges can be correctly described within a single particle approximation (KS), while the strong modification of the V L-edge structures from the KS to the TDDFT description emphasizes the importance of configuration mixing to treat the metal 2p excitations. The origin of the calculated pre-edge features is analyzed in detail with the help of the atom-projected density-of-states of the unoccupied levels. This analysis emphasizes the V 3d dominant character of the final states in the conduction band, probed by the V L-absorption. The strong octahedral distortion of the V(2)O(5) structure allows the mixing of the 3d state with the V 4p components, which are mapped by the oscillator strength in the V K-edge spectrum. The high intensity of the O 1s transitions reflects the presence of a significant O 2p component in the conduction band.

17.
J Hepatol ; 31 Suppl 1: 47-53, 1999.
Artigo em Inglês | MEDLINE | ID: mdl-10622560

RESUMO

Infection with the hepatitis C virus (HCV) is the major cause of nonA-nonB hepatitis worldwide. Although this virus cannot be cultivated in vitro, several of its key features have been elucidated in the past few years. The viral genome is a positive-sense, single-stranded, 9.6 kb long RNA molecule. The viral genome is translated into a single polyprotein of about 3000 amino acids. The viral polyprotein is proteolytically processed by the combination of cellular and viral proteinases in order to yield all the mature viral gene products. The genomic order of HCV has been shown to be C-E1-E2-p7-NS2-NS3-NS4A-NS4B-NS5A-NS5B. C, E1 and E2 are the virion.structural proteins. The function of p7 is currently unknown. These proteins have been shown to arise from the viral polyprotein via proteolytic processing by the host signal peptidases. Generation of the mature nonstructural proteins, NS2 to NS5B, relies on the activity of viral proteinases. Cleavage at the NS2/NS3 junction is accomplished by a metal-dependent autocatalytic proteinase encoded within NS2 and the N-terminus of NS3. The remaining cleavages downstream from this site are effected by a serine proteinase also contained within the N-terminal region of NS3. NS3 also contains an RNA helicase domain at its C-terminus. NS3 forms a heterodimeric complex with NS4A. The latter is a membrane protein that has been shown to act as a cofactor of the proteinase. While no function has yet been attributed to NS4B, it has recently been suggested that NS5A is involved in mediating the resistance of the hepatitis C virus to the action of interferon. Finally, the NS5B protein has been shown to be the viral RNA-dependent RNA polymerase.


Assuntos
Hepacivirus/genética , Genoma Viral , Poliproteínas/genética , Proteínas não Estruturais Virais/genética , Proteínas Estruturais Virais/genética
18.
Arch Biochem Biophys ; 264(1): 281-7, 1988 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-3395125

RESUMO

Difference absorption spectroscopy as a function of pH is described as a probe to determine the pKa values of the 8 alpha-imidazole substituent in flavoenzymes containing 8 alpha-histidylflavin coenzymes. Reversible absorption difference spectra are observed in the pH range 5.5 to 8.5 when synthetic 8 alpha-imidazolyl-FMN is bound to the apoflavodoxins from Azotobacter vinelandii and from Clostridium pasterianum. The observed spectral perturbations of these two flavodoxin complexes follow a single proton ionization dependence with respective pKa values of 6.7 and 6.8. No pH-induced spectral perturbations were observed when 8 alpha-(N-CH3)-imidazolium FMN was bound to either flavodoxin. Similar approaches are described to determine the 8 alpha-imidazolyl pKa values of the 8 alpha-histidyl-FAD coenzyme of the cholesterol oxidases from Schizophyllum commune and from Gleocystidium chrysocreas. Previous work has shown the former enzyme contains an 8 alpha-N1-histidyl-FAD (W. C. Kenney et al. (1979) J. Biol. Chem. 254, 4689-4690) while experiments reported here show the latter enzyme also contains one 8 alpha-N1-histidyl-FAD per mole of enzyme. The pKa value for the 8 alpha-imidazole substituent on the flavin of S. commune cholesterol oxidase is 5.4 while that determined for the G. chrysocreas enzyme is 6.2. These results demonstrate that the pKa of the 8 alpha-imidazole substituent can be determined in enzymes containing an 8 alpha-histidylflavin, provided that the enzyme is stable in the pH range required to observe ionization. Furthermore it is shown this the pKa value can differ even on comparison of enzymes from different sources that catalyze the same reaction.


Assuntos
Apoproteínas , Flavinas , Flavodoxina , Flavoproteínas , Riboflavina/análogos & derivados , Azotobacter/enzimologia , Sítios de Ligação , Colesterol Oxidase , Concentração de Íons de Hidrogênio , Cinética , Oxirredução , Schizophyllum/enzimologia , Espectrofotometria
19.
J Virol ; 69(3): 1769-77, 1995 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-7853516

RESUMO

Hepatitis C virus (HCV) genomic RNA is translated into a large polyprotein that is processed into structural and nonstructural proteins. Processing at the N termini of several nonstructural proteins requires sequences contained in both NS3 and NS4A. NS3 contains a serine protease, whereas the function of NS4A in proteolysis is yet to be determined. By using the vaccinia virus-T7 hybrid expression system to transiently express HCV polypeptides in HeLa cells, we studied the effect of several N-terminal and C-terminal deletions of HCV NS3 on the processing activity at all the downstream cleavage sites. In this way, we have delineated the minimal domain of NS3 required for the serine protease activity associated with this protein. In addition, we demonstrate the formation of a stable complex between NS3 and NS4A: analysis of the deletion mutants reveals a region at the N terminus of NS3 that is necessary for both complex formation and modulation of the proteolytic activity by NS4A but not for the NS4A-independent serine protease activity of NS3.


Assuntos
Hepacivirus/enzimologia , Serina Endopeptidases/metabolismo , Proteínas não Estruturais Virais/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Primers do DNA/química , Células HeLa , Humanos , Técnicas In Vitro , Dados de Sequência Molecular , Ligação Proteica , Processamento de Proteína Pós-Traducional , Deleção de Sequência , Relação Estrutura-Atividade , Proteínas não Estruturais Virais/química , Proteínas Virais/metabolismo
20.
J Biol Chem ; 271(11): 6367-73, 1996 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-8626434

RESUMO

A recombinant Baculovirus expression system was used for the production of a 20-kDa protein encompassing the hepatitis C virus NS3 protease domain. The protein was purified to apparent homogeneity after detergent extraction of cell homogenates. It was shown to be a monomer in solution and to cleave the in vitro translated precursor proteins NS4A-NS4B and NS5A-NS5B, but not the NS4B-NS5A or the NS3-NS4A precursors. The enzyme also cleaved a 20-mer peptide corresponding to the NS4A-NS4B junction with kcat/Km = 174 m(-1) s(-1). Peptides harboring NS4A sequences comprising amino acids 21-54 (Pep4A21-54) and 21-34 (Pep4A21-34) were found to induce an up to 2.8-fold acceleration of cleavage. Kinetic analysis revealed that this acceleration was due to an increase in kcat whereas no significant effect on Km could be detected. Pep4A21-54 was also an absolute requirement for cleavage of in vitro translated NS4B-NS5A by the purified protease. From these data we conclude that: (i) the purified protease domain shows substrate specificity and cleavage requirements similar to those previously reported on the basis of transfection experiments, (ii) activation of the purified protease by the NS4A co-factor can be mimicked by synthetic peptide analogs, and (iii) a central hydrophobic region of NS4A with a minimum core of 14 amino acids is responsible for the interaction with NS3.


Assuntos
Hepacivirus/enzimologia , Serina Endopeptidases/metabolismo , Proteínas não Estruturais Virais/metabolismo , Sequência de Aminoácidos , Animais , Baculoviridae/genética , Sítios de Ligação , Linhagem Celular , Hepacivirus/genética , Técnicas In Vitro , Cinética , Dados de Sequência Molecular , Fragmentos de Peptídeos/genética , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Serina Endopeptidases/genética , Serina Endopeptidases/isolamento & purificação , Spodoptera/genética , Especificidade por Substrato , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA