RESUMO
The three-dimensional arrangement of natural and synthetic network materials determines their application range. Control over the real-time incorporation of each building block and functional group is desired to regulate the macroscopic properties of the material from the molecular level onwards. Here we report an approach combining kinetic Monte Carlo and molecular dynamics simulations that chemically and physically predicts the interactions between building blocks in time and in space for the entire formation process of three-dimensional networks. This framework takes into account variations in inter- and intramolecular chemical reactivity, diffusivity, segmental compositions, branch/network point locations and defects. From the kinetic and three-dimensional structural information gathered, we construct structure-property relationships based on molecular descriptors such as pore size or dangling chain distribution and differentiate ideal from non-ideal structural elements. We validate such relationships by synthesizing organosilica, epoxy-amine and Diels-Alder networks with tailored properties and functions, further demonstrating the broad applicability of the platform.
RESUMO
Herein, we introduce an additive-free visible-light-induced Passerini multicomponent polymerization (MCP) for the generation of high molar mass chains. In place of classical aldehydes (or ketones), highly reactive, in situ photogenerated thioaldehydes are exploited along with isocyanides and carboxylic acids. Prone to side reactions, the thioaldehyde moieties create a complex reaction environment which can be tamed by optimizing the synthetic conditions utilizing stochastic reaction path analysis, highlighting the potential of semi-batch procedures. Once the complex MCP environment is understood, step-growth polymers can be synthesized under mild reaction conditions which-after a Mumm rearrangement-result in the incorporation of thioester moieties directly into the polymer backbone, leading to soft matter materials that can be degraded by straightforward aminolysis or chain expanded by thiirane insertion.
RESUMO
A challenge in the field of polymer network synthesis by a step-growth mechanism is the quantification of the relative importance of inter- vs. intramolecular reactions. Here we use a matrix-based kinetic Monte Carlo (kMC) framework to demonstrate that the variation of the chain length distribution and its averages (e.g., number average chain length xn), are largely affected by intramolecular reactions, as mostly ignored in theoretical studies. We showcase that a conventional approach based on equations derived by Carothers, Flory and Stockmayer, assuming constant reactivities and ignoring intramolecular reactions, is very approximate, and the use of asymptotic limits is biased. Intramolecular reactions stretch the functional group (FG) conversion range and reduce the average chain lengths. In the likely case of restricted mobilities due to diffusional limitations because of a viscosity increase during polymerization, a complex xn profile with possible plateau formation may arise. The joint consideration of stoichiometric and non-stoichiometric conditions allows the validation of hypotheses for both the intrinsic and apparent reactivities of inter- and intramolecular reactions. The kMC framework is also utilized for reverse engineering purposes, aiming at the identification of advanced (pseudo-)analytical equations, dimensionless numbers and mechanistic insights. We highlight that assuming average molecules by equally distributing A and B FGs is unsuited, and the number of AB intramolecular combinations is affected by the number of monomer units in the molecules, specifically at high FG conversions. In the absence of mobility constraints, dimensionless numbers can be considered to map the time variation of the fraction of intramolecular reactions, but still, a complex solution results, making a kMC approach overall most elegant.