RESUMO
The spontaneously hypertensive rats (SHRs) have enhanced palatability for NaCl taste as measured by the increased number of hedonic versus aversive responses to intraoral infusion (1 mL/1 min) of 0.3 M NaCl, in a taste reactivity test in euhydrated condition or after 24 h of water deprivation + 2 h of partial rehydration (WD-PR). SHRs also ingested more sucrose than normotensive rats, without differences in quinine hydrochloride intake. Here, we investigated the palatability of SHRs (n = 8-10) and normotensive Holtzman rats (n = 8-10) to sucrose and quinine sulphate infused intraorally in the same conditions that NaCl palatability was increased in SHRs. SHRs had similar number of hedonic responses to 2% sucrose in euhydrated condition (95 ± 19) or after WD-PR (142 ± 25), responses increased when compared with normotensive rats in euhydrated condition (13 ± 3) or after WD-PR (21 ± 6). SHRs also showed increased number of aversive responses to 1.4 mM quinine sulphate compared with normotensive rats, whether in euhydrated condition (86 ± 6, vs. normotensive: 54 ± 7) or after WD-PR (89 ± 9, vs. normotensive: 40 ± 9). The results suggest that similar to NaCl taste, sweet taste responses are increased in SHRs and resistant to challenges in bodily fluid balance. They also showed a more intense aversive response in SHRs to bitter taste compared with normotensives. This suggests that the enhanced response of SHRs to taste rewards does not correspond to a decreased response to a typical aversive taste.
Assuntos
Quinina , Cloreto de Sódio , Ratos , Animais , Ratos Endogâmicos SHR , Cloreto de Sódio/farmacologia , Quinina/farmacologia , Paladar/fisiologia , Ratos Sprague-Dawley , Sacarose/farmacologiaRESUMO
Sodium appetite reverts from aversive to hedonic the orofacial responses to intraoral hypertonic NaCl in a taste reactivity test (TRT). An electrophysiological-based hypothesis suggests that aversion to salty taste results from oral nociception (e.g., like that produced by intraoral capsaicin). In the present work, we used the TRT to investigate whether sodium appetite and its sensitization produce similar effects on the orofacial responses to the intraoral infusion of either capsaicin or hypertonic NaCl. We produced rapid onset sodium appetite by subcutaneous injection of furosemide combined with a low dose of captopril (Furo/Cap) in adult rats instrumented with intraoral cannula. Then, the animals had 1-h free access to water (thirst test). Immediately after, they entered the TRT receiving a first intraoral infusion (1 ml for a total of 1 min) of (0.5 µM) capsaicin and, 20 min later, a second one of (0.3 M) NaCl. The sequence, Furo/Cap injection - thirst test - TRT, was repeated twice more every three days. The repetition of the Furo/Cap increased the frequency of hedonic responses, decreased the frequency of aversive responses, and increased the hedonic:neutral response ratio to NaCl. The repetition of Furo/Cap reduced transiently the neutral orofacial responses and ended decreasing the aversive:neutral response ratio to capsaicin. The results suggest that repeated Furo/Cap sensitizes the palatability of hypertonic NaCl. They also suggest that sensitization of sodium appetite involves increased sodium "liking". Finally yet importantly, we found that sensitization of sodium appetite can influence orofacial responses to capsaicin. Rapid onset sodium appetite and orofacial responses to intraoral capsaicin and hypertonic NaCl in the rat.
Assuntos
Cloreto de Sódio , Sódio , Animais , Apetite , Capsaicina/farmacologia , Furosemida , Humanos , RatosRESUMO
Sickness behaviour, a syndrome characterized by a general reduction in animal activity, is part of the active-phase response to fight infection. Lipopolysaccharide (LPS), an effective endotoxin to model sickness behaviour, reduces thirst and sodium excretion, and increases neurohypophysial secretion. Here we review the effects of LPS on thirst and sodium appetite. Altered renal function and hydromineral fluid intake in response to LPS occur in the context of behavioural reorganization, which manifests itself as part of the syndrome. Recent data show that, in addition to its classical effect on thirst, non-septic doses of LPS injected intraperitoneally produce a preferential inhibition of intracellular thirst versus extracellular thirst. Moreover, LPS also reduced hypertonic NaCl intake in sodium-depleted rats that entered a sodium appetite test. Antagonism of α2 -adrenoceptors abolished the effect of LPS on sodium appetite. LPS and cytokine transduction potentially recruit brain noradrenaline and α2 -adrenoceptors to control sodium appetite and sickness behaviour.
Assuntos
Apetite , Comportamento de Doença , Receptores Adrenérgicos alfa 2/metabolismo , Sódio/metabolismo , Animais , Lipopolissacarídeos/toxicidade , Equilíbrio HidroeletrolíticoRESUMO
iSodium intake occurs either as a spontaneous or induced behavior, which is enhanced, i.e., sensitized, by repeated episodes of water deprivation followed by subsequent partial rehydration (WD-PR). In the present work, we examined whether repeated WD-PR alters hypothalamic transcripts related to the brain renin-angiotensin system (RAS) and apelin system in male normotensive Holtzman rats (HTZ). We also examined whether the sodium intake of a strain with genetically inherited high expression of the brain RAS, the spontaneously hypertensive rat (SHR), responds differently than HTZ to repeated WD-PR. We found that repeated WD-PR, besides enhancing spontaneous and induced 0.3 M NaCl intake, increased the hypothalamic expression of angiotensinogen, aminopeptidase N, and apelin receptor transcripts (43%, 60%, and 159%, respectively) in HTZ at the end of the third WD-PR. Repeated WD-PR did not change the daily spontaneous 0.3 M NaCl intake and barely changed the need-induced 0.3 M NaCl intake of SHR. The same treatment consistently enhanced spontaneous daily 0.3 M NaCl intake in the normotensive Wistar-Kyoto rats. The results show that repeated WD-PR produces alterations in hypothalamic transcripts and also sensitizes sodium appetite in HTZ. They suggest an association between the components of hypothalamic RAS and the apelin system, with neural and behavioral plasticity produced by repeated episodes of WD-PR in a normotensive strain. The results also indicate that the inherited hyperactive brain RAS is not a guarantee for sensitization of sodium intake in the male adult SHR exposed to repeated WD-PR.
Assuntos
Regulação do Apetite , Comportamento Animal , Hidratação , Hipertensão/metabolismo , Hipotálamo/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , RNA Mensageiro/metabolismo , Sistema Renina-Angiotensina , Cloreto de Sódio na Dieta/administração & dosagem , Privação de Água , Animais , Apelina , Modelos Animais de Doenças , Regulação da Expressão Gênica , Hipertensão/genética , Hipertensão/fisiopatologia , Hipertensão/psicologia , Peptídeos e Proteínas de Sinalização Intercelular/genética , Masculino , Plasticidade Neuronal , RNA Mensageiro/genética , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Ratos Sprague-Dawley , Sistema Renina-Angiotensina/genética , Fatores de TempoRESUMO
History of sodium depletion cross-sensitizes the effects of drugs of abuse. The objective of the present study was to find out if history of sodium depletion also cross-sensitizes a natural reward such as sugar intake in the rat. Sodium depletion was induced by furosemide combined with removal of ambient sodium for 24 h; it was repeated seven days later. The depletion was immediately followed by 0.3 M NaCl intake in a sodium appetite test (active sodium repletion). Seven days after the last depletion, hydrated and fed (need-free) sucrose-naïve animals were offered 10% sucrose in a first 2-h sucrose test. The sucrose test was repeated once a day in a series of five consecutive days. History of sodium depletion enhanced sucrose intake in the first and second tests; it had no effect from the third to fifth sucrose test. The effect on the initial sucrose intake tests disappeared if the rats did not ingest 0.3 M NaCl in the sodium appetite test. Prior experience with sucrose intake in need-free conditions had no effect on sodium appetite. History of intracellular dehydration transiently influenced sucrose intake in the first sucrose test. We found no evidence for thirst sensitization. We conclude that history of dehydration, particularly that resulting from sodium depletion, combined to active sodium repletion, produced short-term cross-sensitization of sucrose intake in sucrose-naïve rats. The results suggest that the cross-sensitization of sucrose intake related with acquisition of sugar as a novel nutrient rather than production of lasting effects on sugar rewarding properties.
Assuntos
Dieta Hipossódica , Açúcares da Dieta/administração & dosagem , Cloreto de Sódio na Dieta/administração & dosagem , Sódio na Dieta/administração & dosagem , Animais , Apetite , Desidratação , Furosemida/administração & dosagem , Masculino , Ratos , Ratos Sprague-Dawley , SedeRESUMO
In states of sodium deficiency many animals seek and consume salty solutions to restore body fluid homeostasis. These behaviors reflect the presence of sodium appetite that is a manifestation of a pattern of central nervous system (CNS) activity with facilitatory and inhibitory components that are affected by several neurohumoral factors. The primary focus of this review is on one structure in this central system, the lateral parabrachial nucleus (LPBN). However, before turning to a more detailed discussion of the LPBN, a brief overview of body fluid balance-related body-to-brain signaling and the identification of the primary CNS structures and humoral factors involved in the control of sodium appetite is necessary. Angiotensin II, mineralocorticoids, and extracellular osmotic changes act on forebrain areas to facilitate sodium appetite and thirst. In the hindbrain, the LPBN functions as a key integrative node with an ascending output that exerts inhibitory influences on forebrain regions. A nonspecific or general deactivation of LPBN-associated inhibition by GABA or opioid agonists produces NaCl intake in euhydrated rats without any other treatment. Selective LPBN manipulation of other neurotransmitter systems [e.g., serotonin, cholecystokinin (CCK), corticotrophin-releasing factor (CRF), glutamate, ATP, or norepinephrine] greatly enhances NaCl intake when accompanied by additional treatments that induce either thirst or sodium appetite. The LPBN interacts with key forebrain areas that include the subfornical organ and central amygdala to determine sodium intake. To summarize, a model of LPBN inhibitory actions on forebrain facilitatory components for the control of sodium appetite is presented in this review.
Assuntos
Apetite/fisiologia , Rombencéfalo/fisiologia , Sódio na Dieta , Animais , Inibição Neural , Vias Neurais/fisiologia , Prosencéfalo/fisiologia , Equilíbrio HidroeletrolíticoRESUMO
The objective of the present work is to examine from a new perspective the existence of causal factors not predicted by the classical theory that thirst and sodium appetite are two distinct motivations. For example, we ask why water deprivation induces sodium appetite, thirst is not "water appetite", and intracellular dehydration potentially causes sodium appetite. Contrary to the classical theory, we suggest that thirst first, and sodium appetite second, designate a temporal sequence underlying the same motivation. The single motivation becomes an "intervenient variable" a concept borrowed from the literature, fully explained in the text, between causes of dehydration (extracellular, intracellular, or both together), and respective behavioral responses subserved by hindbrain-dependent inhibition (e.g., lateral parabrachial nucleus) and forebrain facilitation (e.g., angiotensin II). A corollary is homology between rat sodium appetite and marine teleost thirst-like motivation that we name "protodipsia". The homology argument rests on similarities between behavior (salty water intake) and respective neuroanatomical as well as functional mechanisms. Tetrapod origin in a marine environment provides additional support for the homology. The single motivation hypothesis is also consistent with ingestive behaviors in nature given similarities (e.g., thirst producing brackish water intake) between the behavior of the laboratory rat and wild animals, rodents included. The hypotheses of single motivation and homology might explain why hyperosmotic rats, or eventually any other hyperosmotic tetrapod, shows paradoxical signs of sodium appetite. They might also explain how ingestive behaviors determined by dehydration and subserved by hindbrain inhibitory mechanisms contributed to tetrapod transition from sea to land.
Assuntos
Apetite , Evolução Biológica , Desidratação , Ingestão de Líquidos , Animais , Ratos , Desidratação/fisiopatologia , Apetite/fisiologia , Ingestão de Líquidos/fisiologia , Sede/fisiologia , Motivação/fisiologia , Sódio/metabolismo , Comportamento de Ingestão de Líquido/fisiologiaRESUMO
Previous studies from our laboratory have shown that the pressor response to intracerebroventricular (icv) administered ANG II in normotensive rats or spontaneously hypertensive rats (SHRs) is attenuated by increased central H2O2 concentration, produced either by direct H2O2 icv injection or by increased endogenous H2O2 centrally in response to local catalase inhibition with 3-amino-1,2,4-triazole (ATZ). In the present study, we evaluated the effects of ATZ administered peripherally on arterial pressure and sympathetic and angiotensinergic activity in SHRs. Male SHRs weighing 280-330 g were used. Mean arterial pressure (MAP) and heart rate (HR) were recorded in conscious freely moving SHRs. Acute intravenous injection of ATZ (300 mg/kg of body weight) did not modify MAP and HR during the next 4 h, however, the treatment with ATZ (300 mg/kg of body weight twice per day) for 3 days reduced MAP (144 ± 6, vs. saline, 183 ± 13 mmHg), without changing HR. Intravenous hexamethonium (ganglionic blocker) produced a smaller decrease in MAP 4 h after ATZ (-25 ± 3, vs saline -38 ± 4 mmHg). Losartan (angiotensinergic AT1 receptor blocker) produced a significant depressor response 4 h after ATZ (-22 ± 4, vs. saline: -2 ± 4 mmHg) and in 3-day ATZ treated SHRs (-25 ± 5, vs. saline: -9 ± 4 mmHg). The results suggest that the treatment with ATZ reduces sympathetic activity in SHRs and simultaneously increases angiotensinergic activity.
Assuntos
Hipertensão , Triazóis , Ratos , Masculino , Animais , Ratos Endogâmicos SHR , Amitrol (Herbicida)/farmacologia , Triazóis/farmacologia , Peróxido de Hidrogênio/farmacologia , Pressão Sanguínea , Frequência Cardíaca , Peso Corporal , Hipertensão/tratamento farmacológicoRESUMO
AIMS: Reactive oxygen species like hydrogen peroxide (H2O2) are produced endogenously and may participate in intra- and extracellular signaling, including modulation of angiotensin II responses. In the present study, we investigated the effects of chronic subcutaneous (sc) administration of the catalase inhibitor 3-amino-1,2,4-triazole (ATZ) on arterial pressure, autonomic modulation of arterial pressure, hypothalamic expression of AT1 receptors and neuroinflammatory markers and fluid balance in 2-kidney, 1clip (2K1C) renovascular hypertensive rats. MATERIALS AND METHODS: Male Holtzman rats with a clip occluding partially the left renal artery and chronic sc injections of ATZ were used. KEY FINDINGS: Subcutaneous injections of ATZ (600 mg/kg of body weight/day) for 9 days in 2K1C rats reduced arterial pressure (137 ± 8, vs. saline: 182 ± 8 mmHg). ATZ also reduced the sympathetic modulation and enhanced the parasympathetic modulation of pulse interval, reducing the sympatho-vagal balance. Additionally, ATZ reduced mRNA expression for interleukins 6 and IL-1ß, tumor necrosis factor-α, AT1 receptor (0.77 ± 0.06, vs. saline: 1.47 ± 0.26 fold change), NOX 2 (0.85 ± 0.13, vs. saline: 1.75 ± 0.15 fold change) and the marker of microglial activation, CD 11 (0.47 ± 0.07, vs. saline, 1.34 ± 0.15 fold change) in the hypothalamus of 2K1C rats. Daily water and food intake and renal excretion were only slightly modified by ATZ. SIGNIFICANCE: The results suggest that the increase of endogenous H2O2 availability with chronic treatment with ATZ had an anti-hypertensive effect in 2K1C hypertensive rats. This effect depends on decreased activity of sympathetic pressor mechanisms and mRNA expression of AT1 receptors and neuroinflammatory markers possibly due to reduced angiotensin II action.
Assuntos
Hipertensão Renovascular , Hipertensão , Nefropatias , Ratos , Masculino , Animais , Hipertensão Renovascular/tratamento farmacológico , Angiotensina II/farmacologia , Catalase , Peróxido de Hidrogênio/farmacologia , Hipertensão/tratamento farmacológico , Ratos Sprague-Dawley , RNA Mensageiro , Pressão SanguíneaRESUMO
The shell Nucleus Accumbens (NAcc) projects to the lateral preoptic area, which is involved in the central micturition control and receives inputs from medullary areas involved in cardiovascular control. We investigated the role of GABAergic and glutamatergic transmission in the shell NAcc on intravesical pressure (IP) and cardiovascular control. Male Wistar rats with guide cannulas implanted bilaterally in the shell NAcc 7 days prior to the experiments were anesthetized with 2% isoflurane in 100% O2 and subjected to cannulation of the femoral artery and vein for mean arterial pressure (MAP) and heart rate recordings (HR) and infusion of drugs, respectively. The urinary bladder (UB) was cannulated for IP measurement. A Doppler flow probe was placed around the renal arterial for renal blood flow (RBF) measurement. After the baseline MAP, HR, IP and RBF recordings for 15 min, GABA or bicuculline methiodate (BMI) or L-glutamate or kynurenic acid (KYN) or saline (vehicle) were bilaterally injected into the shell NAcc and the variables were measured for 30 min. Data are as mean ± SEM and submitted to StudentÌs t test. GABA injections into the shell NAcc evoked a significant fall in MAP and HR and increased IP and RC compared to saline. L-glutamate in the shell NAcc increased MAP, HR and IP and reduced RC. Injections of BMI and KYN elicited no changes in the variables recorded. Therefore, the GABAergic and glutamatergic transmissions in neurons in the shell NAcc are involved in the neural pathways responsible for the central cardiovascular control and UB regulation.
Assuntos
Núcleo Accumbens , Bexiga Urinária , Ratos , Animais , Masculino , Núcleo Accumbens/fisiologia , Ratos Wistar , Ácido Glutâmico , Ácido gama-AminobutíricoRESUMO
Estrogen has a well-known effect of reducing salt intake in rats. This mini review focuses on recent findings regarding the interaction of estradiol with brain angiotensin II to control increased sodium palatability that occurs as a result of sodium appetite in spontaneously hypertensive rats.
RESUMO
The objective of this critique is to demonstrate that the theory of "internal environment" (TIE) does not support the theory of "homeostasis" (TOH). We review and conclude that remains valid the concept of "internal environment", which corresponds anatomically to the extracellular fluid (ECF) that bathes tissue cells. The Claude Bernard's classification of "life", a corollary of the TIE under a strict "reactive" paradigm, we then interpret as a classification of how animals behave in response to environmental changes. According to such interpretation, the two theories agree that, when facing changes in the external environment, animals with "free" behavior regulate essential metabolism factors present in the ECF. These are "internalized environmental factors" or IEF (temperature, O2, water, and basic organic and inorganic "nutrients"), a marine legacy of the evolution of the body fluid compartments. However, we show that have empirical and logical shortcomings key inferences derived from the TIE. Such inferences representing traditional premises of TOH we summarize here in two axioms: "if free behavior then regulated IEF" and "all behavioral mechanisms regulate the IEF". In addition, whereas "stability" means "free behavior versus dormancy" in TIE, it means "tissue cells that resist destruction" in TOH. This leads to inevitable contradictions, here discussed at length, that reduce the scope of TOH. We might be in need of a theory that considers not only where TIE and TOH are superficially valid, but also where they crucially diverge, in order to explain "stability" as applied to physiology and behavior.
Assuntos
Homeostase , Animais , Homeostase/fisiologiaRESUMO
GABAA receptor activation with agonist muscimol in the lateral parabrachial nucleus (LPBN) induces 0.3 M NaCl intake. In the present study, we investigated water and 0.3 M NaCl intake in male adult rats treated with losartan (angiotensin AT1 receptor antagonist) or MeT-AVP (V1-type vasopressin receptor antagonist) combined with muscimol or methysergide (5-HT2 antagonist) into the LPBN in rats treated with intragastric 2 M NaCl. After 2 M NaCl load and bilateral injections of muscimol (0.5 nmol/0.2 µL) into the LPBN, rats ingested water and 0.3 M NaCl. The pre-treatment of the LPBN with MeT-AVP (1 nmol/0.2 µL) but not losartan (50 µg/0.2 µL) in muscimol treated rats reduced 0.3 M NaCl intake. The pre-treatment of the LPBN with MeT-AVP did not modify the increased 0.3 M NaCl intake in rats treated with methysergide (4 µg/0.2 µL), suggesting that the effect of MeT-AVP was not due to non-specific inhibition of ingestive behavior. The results suggest that endogenous vasopressin in the LPBN facilitates the effects of GABAergic activation driving cell-dehydrated male rats to ingest 0.3 M NaCl.
Assuntos
Núcleos Parabraquiais , Antagonistas de Receptores de Angiotensina , Animais , Ingestão de Líquidos , Losartan/farmacologia , Masculino , Metisergida/farmacologia , Muscimol/farmacologia , Núcleos Parabraquiais/fisiologia , Ratos , Receptores de GABA-A/metabolismo , Receptores de Vasopressinas , Cloreto de Sódio/farmacologia , Água/farmacologiaRESUMO
The spontaneously hypertensive rat (SHR) has an intense consumption of NaCl solution. Water deprivation (WD) followed by water intake to satiety induces partial rehydration (PR)-the WD-PR protocol-and sodium appetite. In the present work, WD produced similar water intake and no alterations in arterial pressure among spontaneously hypertensive rat (SHR), Wistar-Kyoto, and Holtzman strains. It also increased the number of cells with positive c-Fos immunoreactivity (Fos-IR) in the lamina terminalis and in the hypothalamic supraoptic (SON) and paraventricular (parvocellular, PVNp) nucleus in these strains. The WD and WD-PR produced similar alterations in all strains in serum osmolality and protein, plasma renin activity, and sodium balance. The SHR ingested about 10 times more 0.3 M NaCl than normotensives strains in the sodium appetite test that follows WD-PR. After WD-PR, the Fos-IR persisted, elevated in the lamina terminalis of all strains but notably in the subfornical organ of the SHR. The WD-PR reversed Fos-IR in the SON of all strains and in the PVNp of SHR. It induced Fos-IR in the area postrema and in the nucleus of the solitary tract (NTS), dorsal raphe, parabrachial (PBN), pre-locus coeruleus (pre-LC), suprachiasmatic, and central amygdalar nucleus of all strains. This effect was bigger in the caudal-NTS, pre-LC, and medial-PBN of SHRs. The results indicate that WD-PR increases cell activity in the forebrain and hindbrain areas that control sodium appetite in the rat. They also suggest that increased cell activity in facilitatory brain areas precedes the intense 0.3 M NaCl intake of the SHR in the sodium appetite test.
Assuntos
Apetite/fisiologia , Hipertensão/metabolismo , Hipotálamo/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Cloreto de Sódio na Dieta/farmacologia , Privação de Água/fisiologia , Tonsila do Cerebelo/metabolismo , Animais , Pressão Sanguínea/fisiologia , Ingestão de Líquidos/fisiologia , Ingestão de Alimentos/fisiologia , Eletrólitos/sangue , Eletrólitos/urina , Frequência Cardíaca/fisiologia , Hipertensão/fisiopatologia , Imuno-Histoquímica , Masculino , Área Pré-Óptica/metabolismo , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Ratos Sprague-Dawley , Órgão Subfornical/metabolismo , Equilíbrio Hidroeletrolítico/fisiologiaRESUMO
Injection of muscimol, a GABAA receptor agonist, into the lateral parabrachial nucleus (LPBN) induces 0.3 M NaCl intake in rats. In the present work, we investigated whether such an effect applies to hypertonic (0.3 M) mineral solutions in general or is selective to sodium solutions in a 240 min intake test. Muscimol injection (0.5 nmol/0.2 µL) compared to vehicle injection into the LPBN of adult hydrated rats produced a preferential ingestion of 0.3 M NaCl (25.3 ± 10.2 mL) followed by a 0.3 M NaHCO3 intake (11.7 ± 5.6 mL), with no significant effect on water, KCl and CaCl2 intake. Only the effect of muscimol on NaCl intake (19.0 ± 10.4 mL) persisted in cell-dehydrated rats, with hardly any effect on water or other mineral solutions. The results suggest that the LPBN controls the ingestion of hypertonic NaCl and NaHCO3. They also suggest a selective mechanisms involving the LPBN to check hypertonic sodium intake.
Assuntos
Minerais/metabolismo , Muscimol/farmacologia , Núcleos Parabraquiais/efeitos dos fármacos , Sódio/metabolismo , Animais , Agonistas GABAérgicos/farmacologia , Antagonistas GABAérgicos/farmacologia , Agonistas de Receptores de GABA-A/farmacologia , Masculino , Minerais/farmacologia , Núcleos Parabraquiais/fisiologia , Ratos Wistar , Receptores de GABA-A/efeitos dos fármacos , Receptores de GABA-A/metabolismo , Cloreto de Sódio/farmacologiaRESUMO
Intracerebroventricular (icv) injection of hydrogen peroxide (H2O2) or the increase of endogenous H2O2 centrally produced by catalase inhibition with 3-amino-1,2,4-triazole (ATZ) injected icv reduces the pressor responses to central angiotensin II (ANG II) in normotensive rats. In the present study, we investigated the changes in the arterial pressure and in the pressor responses to ANG II icv in spontaneously hypertensive rats (SHRs) and 2-kidney, 1-clip (2K1C) hypertensive rats treated with H2O2 injected icv or ATZ injected icv or intravenously (iv). Adult male SHRs or Holtzman rats (n = 5-10/group) with stainless steel cannulas implanted in the lateral ventricle were used. In freely moving rats, H2O2 (5 µmol/1 µl) or ATZ (5 nmol/1 µl) icv reduced the pressor responses to ANG II (50 ng/1 µl) icv in SHRs (11 ± 3 and 17 ± 4 mmHg, respectively, vs. 35 ± 6 mmHg) and 2K1C hypertensive rats (3 ± 1 and 16 ± 3 mmHg, respectively, vs. 26 ± 2 mmHg). ATZ (3.6 mmol/kg of body weight) iv alone or combined with H2O2 icv also reduced icv ANG II-induced pressor response in SHRs and 2K1C hypertensive rats. Baseline arterial pressure was also reduced (-10 to -15 mmHg) in 2K1C hypertensive rats treated with H2O2 icv and ATZ iv alone or combined and in SHRs treated with H2O2 icv alone or combined with ATZ iv. The results suggest that exogenous or endogenous H2O2 acting centrally produces anti-hypertensive effects impairing central pressor mechanisms activated by ANG II in SHRs or 2K1C hypertensive rats.
Assuntos
Amitrol (Herbicida)/administração & dosagem , Pressão Sanguínea/efeitos dos fármacos , Peróxido de Hidrogênio/administração & dosagem , Hipertensão/tratamento farmacológico , Oxidantes/administração & dosagem , Angiotensina II , Animais , Catalase/antagonistas & inibidores , Avaliação Pré-Clínica de Medicamentos , Infusões Intraventriculares , Masculino , Ratos Endogâmicos SHRRESUMO
Anti-hypertensive drugs that act on central alpha(2)-adrenoceptors and imidazoline receptors usually cause dry mouth in patients. A central area important for the control of salivary secretion and also for the effects of alpha(2)-adrenoceptor activation is the lateral hypothalamus (LH). Therefore, in the present study we investigated the effects of the injections of moxonidine (an alpha(2)-adrenoceptor and imidazoline agonist) alone or combined with RX 821002 (alpha(2)-adrenoceptor antagonist) into the LH on the salivation induced by intraperitoneal (i.p.) pilocarpine (cholinergic muscarinic agonist). Male Holtzman rats with stainless steel cannula implanted into the LH were used. Saliva was collected using pre-weighted small cotton balls inserted into the animal's mouth under ketamine anesthesia. Salivation induced by i.p. pilorcarpine (4micromol/kg of body weight) was reduced by the injection of moxonidine (10 and 20nmol/0.5microl) into the LH (222+/-46 and 183+/-19mg/7min, vs. vehicle: 480+/-30mg/7min). The inhibitory effect of moxonidine on pilocarpine-induced salivation was abolished by prior injections of RX 821002 (160 and 320nmol/0.5microl) into the LH (357+/-25 and 446+/-38mg/7min). Injections of the alpha(1)-adrenoceptor antagonist prazosin (320nmol/0.5microl) into the LH did not change the effects of moxonidine. The results show that activation of alpha(2)-adrenoceptors in the LH inhibits pilocarpine-induced salivation, suggesting that LH is one of the possible central sites involved in the anti-salivatory effects produced by the treatment with alpha(2)-adrenoceptor agonists.
Assuntos
Agonistas de Receptores Adrenérgicos alfa 2 , Agonistas alfa-Adrenérgicos/farmacologia , Região Hipotalâmica Lateral/efeitos dos fármacos , Agonistas Muscarínicos/farmacologia , Pilocarpina/farmacologia , Salivação/efeitos dos fármacos , Antagonistas Adrenérgicos alfa/farmacologia , Animais , Interações Medicamentosas/fisiologia , Região Hipotalâmica Lateral/metabolismo , Idazoxano/análogos & derivados , Idazoxano/farmacologia , Imidazóis/farmacologia , Masculino , Norepinefrina/metabolismo , Prazosina/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores Adrenérgicos alfa 2/metabolismo , Salivação/fisiologiaRESUMO
Obesity activates the renin-angiotensin and sympathetic systems facilitating hypertension and changes in the hydroelectrolytic balance. In the present study, in rats fed with high-fat diet (HFD), we investigated daily water intake and urinary excretion, prandial consumption of water and the changes in blood pressure and water intake to intracerebroventricular (icv) angiotensin II (ANG II). Male Holtzman rats (290-320 g) were fed with standard diet (SD, 11% calories from fat) or HFD (45% calories from fat) for 6 weeks. Part of the animals received a stainless steel cannula in the lateral ventricle (LV) at the 6th week after the beginning of the diets and the experiments were performed at the 7th week. The pressor effect, but not the dipsogenic response to acute icv injection of ANG II, was potentiated in the HFD rats. Daily water intake and urinary volume were reduced in rats fed with HFD with no significant changes in sodium excretion. Prandial water consumption was also reduced in rats ingesting HFD, an effect almost totally reverted blocking salivation with atropine. These results show a potentiation of the pressor response to icv ANG II in HFD-fed rats, without changing icv ANG II-induced water intake. In addition, prandial and daily water intake and urinary volume were reduced in HFD-fed rats, without changing sodium excretion. Salivation in rats ingesting HFD may play a role in the reduced prandial and daily water intake.
Assuntos
Pressão Sanguínea/efeitos dos fármacos , Dieta Hiperlipídica/efeitos adversos , Ingestão de Líquidos/efeitos dos fármacos , Angiotensina II/farmacologia , Animais , Ingestão de Alimentos/efeitos dos fármacos , Hipertensão/fisiopatologia , Injeções Intraventriculares , Masculino , Obesidade/fisiopatologia , Ratos , Ratos Sprague-Dawley , Equilíbrio Hidroeletrolítico/fisiologiaRESUMO
Intracerebroventricular (icv) injection of hydrogen peroxide (H2O2), a reactive oxygen species, or the blockade of catalase (enzyme that degrades H2O2 into H2O and O2) with icv injection of 3-amino-1,2,4-triazole (ATZ) reduces the pressor effects of angiotensin II also injected icv. In the present study, we investigated the effects of ATZ injected icv or intravenously (iv) on the pressor responses induced by icv injections of the cholinergic agonist carbachol, which similar to angiotensin II induces pressor responses that depend on sympathoexcitation and vasopressin release. In addition, the effects of H2O2 icv on the pressor responses to icv carbachol were also tested to compare with the effects of ATZ. Normotensive non-anesthetized male Holtzman rats (280-300 g, n = 8-9/group) with stainless steel cannulas implanted in the lateral ventricle were used. Previous injection of ATZ (5 nmol/1 µl) or H2O2 (5 µmol/1 µl) icv similarly reduced the pressor responses induced by carbachol (4 nmol/1 µl) injected icv (13 ± 4 and 12 ± 4 mmHg, respectively, vs. vehicle + carbachol: 30 ± 5 mmHg). ATZ (3.6 mmol/kg of body weight) injected iv also reduced icv carbachol-induced pressor responses (21 ± 2 mmHg). ATZ icv or iv and H2O2 icv injected alone produced no effect on baseline arterial pressure. The treatments also produced no significant change of heart rate. The results show that ATZ icv or iv reduced the pressor responses to icv carbachol, suggesting that endogenous H2O2 acting centrally inhibits the pressor mechanisms (sympathoactivation and/or vasopressin release) activated by central cholinergic stimulation.
Assuntos
Pressão Sanguínea/efeitos dos fármacos , Catalase/farmacologia , Hipertensão/fisiopatologia , Amitrol (Herbicida)/farmacologia , Angiotensina II , Animais , Carbacol/farmacologia , Agonistas Colinérgicos/farmacologia , Frequência Cardíaca/efeitos dos fármacos , Peróxido de Hidrogênio/farmacologia , Hipertensão/tratamento farmacológico , Injeções Intraventriculares , Masculino , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio , Vasoconstritores/farmacologia , VasopressinasRESUMO
Central cholinergic activation stimulates water intake, but also NaCl intake when the inhibitory mechanisms are blocked with injections of moxonidine (α2 adrenergic/imidazoline agonist) into the lateral parabrachial nucleus (LPBN). In the present study, we investigated the involvement of central M1 and M2 muscarinic receptors on NaCl intake induced by pilocarpine (non-selective muscarinic agonist) intraperitoneally combined with moxonidine into the LPBN or by muscimol (GABAA agonist) into the LPBN. Male Holtzman rats with stainless steel cannulas implanted bilaterally in the LPBN and in the lateral ventricle were used. Pirenzepine (M1 muscarinic antagonist, 1 nmol/1 µl) or methoctramine (M2 muscarinic antagonist, 50 nmol/1 µL) injected intracerebroventricularly (i.c.v.) reduced 0.3 M NaCl and water intake in rats treated with pilocarpine (0.1 mg/100 g of body weight) injected intraperitoneally combined with moxonidine (0.5 nmol/0.2 µL) into the LPBN. In rats treated with muscimol (0.5 nmol/0.2 µL) into the LPBN, methoctramine i.c.v. also reduced 0.3 M NaCl and water intake, however, pirenzepine produced no effect. The results suggest that M1 and M2 muscarinic receptors activate central pathways involved in the control of water and sodium intake that are under the influence of the LPBN inhibitory mechanisms.