Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Nature ; 456(7219): 239-44, 2008 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-18923393

RESUMO

Diatoms are photosynthetic secondary endosymbionts found throughout marine and freshwater environments, and are believed to be responsible for around one-fifth of the primary productivity on Earth. The genome sequence of the marine centric diatom Thalassiosira pseudonana was recently reported, revealing a wealth of information about diatom biology. Here we report the complete genome sequence of the pennate diatom Phaeodactylum tricornutum and compare it with that of T. pseudonana to clarify evolutionary origins, functional significance and ubiquity of these features throughout diatoms. In spite of the fact that the pennate and centric lineages have only been diverging for 90 million years, their genome structures are dramatically different and a substantial fraction of genes ( approximately 40%) are not shared by these representatives of the two lineages. Analysis of molecular divergence compared with yeasts and metazoans reveals rapid rates of gene diversification in diatoms. Contributing factors include selective gene family expansions, differential losses and gains of genes and introns, and differential mobilization of transposable elements. Most significantly, we document the presence of hundreds of genes from bacteria. More than 300 of these gene transfers are found in both diatoms, attesting to their ancient origins, and many are likely to provide novel possibilities for metabolite management and for perception of environmental signals. These findings go a long way towards explaining the incredible diversity and success of the diatoms in contemporary oceans.


Assuntos
Diatomáceas/genética , Evolução Molecular , Genoma/genética , DNA de Algas/análise , Genes Bacterianos/genética , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Transdução de Sinais
2.
Proc Natl Acad Sci U S A ; 107(42): 18214-9, 2010 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-20921421

RESUMO

Diatoms are prominent phytoplanktonic organisms that contribute around 40% of carbon assimilation in the oceans. They grow and perform optimally in variable environments, being able to cope with unpredictable changes in the amount and quality of light. The molecular mechanisms regulating diatom light responses are, however, still obscure. Using knockdown Phaeodactylum tricornutum transgenic lines, we reveal the key function of a member of the light-harvesting complex stress-related (LHCSR) protein family, denoted LHCX1, in modulation of excess light energy dissipation. In contrast to green algae, this gene is already maximally expressed in nonstressful light conditions and encodes a protein required for efficient light responses and growth. LHCX1 also influences natural variability in photoresponse, as evidenced in ecotypes isolated from different latitudes that display different LHCX1 protein levels. We conclude, therefore, that this gene plays a pivotal role in managing light responses in diatoms.


Assuntos
Diatomáceas/fisiologia , Complexos de Proteínas Captadores de Luz/fisiologia , Luz , Clorofila/metabolismo , Técnicas de Silenciamento de Genes , Inativação Gênica , Complexos de Proteínas Captadores de Luz/genética , Oxigênio/metabolismo
3.
Bioessays ; 31(8): 874-84, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19572334

RESUMO

Diatoms are important protists that generate one fifth of the oxygen produced annually on earth. These aquatic organisms likely derived from a secondary endosymbiosis event, and they display peculiar genomic and structural features that reflect their chimeric origin. Diatoms were one of the first models of cell division and these early studies revealed a range of interesting features including a unique acentriolar microtubule-organising centre. Unfortunately, almost nothing is known at the molecular level, in contrast to the advances in other experimental organisms. Recently the full genome sequences of two diatoms have been annotated and molecular tools have been developed. These resources offer new possibilities to re-investigate the mechanisms of cell division in diatoms by recruiting information from more intensively studied organisms. A renaissance of the topic is further justified by the current interest in diatoms as a source of biofuels and for understanding massive diatom proliferation events in response to environmental stimuli.


Assuntos
Diatomáceas/citologia , Mitose , Modelos Biológicos , Animais , Cinetocoros/metabolismo , Centro Organizador dos Microtúbulos/metabolismo , Fuso Acromático/metabolismo
4.
PLoS Biol ; 4(3): e60, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16475869

RESUMO

Diatoms are an important group of eukaryotic phytoplankton, responsible for about 20% of global primary productivity. Study of the functional role of chemical signaling within phytoplankton assemblages is still in its infancy although recent reports in diatoms suggest the existence of chemical-based defense strategies. Here, we demonstrate how the accurate perception of diatom-derived reactive aldehydes can determine cell fate in diatoms. In particular, the aldehyde (2E,4E/Z)-decadienal (DD) can trigger intracellular calcium transients and the generation of nitric oxide (NO) by a calcium-dependent NO synthase-like activity, which results in cell death. However, pretreatment of cells with sublethal doses of aldehyde can induce resistance to subsequent lethal doses, which is reflected in an altered calcium signature and kinetics of NO production. We also present evidence for a DD-derived NO-based intercellular signaling system for the perception of stressed bystander cells. Based on these findings, we propose the existence of a sophisticated stress surveillance system in diatoms, which has important implications for understanding the cellular mechanisms responsible for acclimation versus death during phytoplankton bloom successions.


Assuntos
Cálcio/farmacologia , Diatomáceas/efeitos dos fármacos , Diatomáceas/metabolismo , Óxido Nítrico/metabolismo , Aldeídos/farmacologia , Morte Celular/efeitos dos fármacos , Diatomáceas/citologia , Resistência a Medicamentos , Oceanos e Mares
5.
Artigo em Inglês | MEDLINE | ID: mdl-16503425

RESUMO

In the present study, an alternative procedure for two-dimensional (2D) electrophoretic analysis in proteomic investigation of the most represented basic muscle water-soluble proteins is suggested. Our method consists of Acetic acid-Urea-Triton polyacrylamide gel (AUT-PAGE) analysis in the first dimension and standard sodium dodecyl sulphate polyacrylamide gel (SDS-PAGE) in the second dimension. Although standard two-dimensional Immobilized pH Gradient-Sodium Dodecyl-Sulphate (2D IPG-SDS) gel electrophoresis has been successfully used to study these proteins, most of the water-soluble proteins are spread on the alkaline part of the 2D map and are poorly focused. Furthermore, the similarity in their molecular weights impairs resolution of the classical approach. The addition of Triton X-100, a non-ionic detergent, into the gel induces a differential electrophoretic mobility of proteins as a result of the formation of mixed micelles between the detergent and the hydrophobic moieties of polypeptides, separating basic proteins with a criterion similar to reversed phase chromatography based on their hydrophobicity. The acid pH induces positive net charges, increasing with the isoelectric point of proteins, thus allowing enhanced resolution in the separation. By using 2D AUT-PAGE/SDS electrophoresis approach to separate water-soluble proteins from fresh pork and from dry-cured products, we could spread proteins over a greater area, achieving a greater resolution than that obtained by IPG in the pH range 3-10 and 6-11. Sarcoplasmic proteins undergoing proteolysis during the ripening of products were identified by Matrix Assisted Laser Desorption/Ionization-Time of Flight (MALDI-ToF) mass spectrometry peptide mass fingerprinting in a easier and more effective way. Two-dimensional AUT-PAGE/SDS electrophoresis has allowed to simplify separation of sarcoplasmic protein mixtures making this technique suitable in the defining of quality of dry-cured pork products by immediate comparison of 2D maps to define the events occurring during their ripening and individuate candidate molecular markers of the characteristic proteolytic processes. Considering that, essentially, muscle endogenous enzymic activity, calpains and cathepsins, occur in the ripening process of dry-cured ham, whereas a combined action between endogenous and microbial enzymes takes place in the case of sausage ripening, these results provide deeper insight into the respective role of endogenous and microbial enzymes in performing proteolysis. Finally, image analysis and creation of data bank could be achieved to quickly identify and protect typical products.


Assuntos
Eletroforese em Gel Bidimensional/métodos , Eletroforese em Gel de Poliacrilamida/métodos , Proteínas Musculares/química , Proteômica , Retículo Sarcoplasmático/química , Animais , Cromatografia Líquida de Alta Pressão , Humanos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
6.
Protist ; 166(5): 506-21, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26386358

RESUMO

The marine pennate diatom Phaeodactylum tricornutum has become a model for diatom biology, due to its ease of culture and accessibility to reverse genetics approaches. While several features underlying the molecular mechanisms of cell division have been described, morphological analyses are less advanced than they are in other diatoms. We therefore examined cell ultrastructure changes prior to and during cytokinesis. Following chloroplast division, cleavage furrows are formed at both longitudinal ends of the cell and are accompanied by significant vesicle transport. Although neither spindle nor microtubules were observed, the nucleus appeared to be split by the furrow after duplication of the Golgi apparatus. Finally, centripetal cytokinesis was completed by fusion of the furrows. Additionally, F-actin formed a ring structure and its diameter became smaller, accompanying the ingrowing furrows. To further analyse vesicular transport during cytokinesis, we generated transgenic cells expressing yellow fluorescent protein (YFP) fusions with putative diatom orthologs of small GTPase Sec4 and t-SNARE protein SyntaxinA. Time-lapse observations revealed that SyntaxinA-YFP localization expands from both cell tips toward the center, whereas Sec4-YFP was found in the Golgi and subsequently relocalizes to the future division plane. This work provides fundamental new information about cell replication processes in P. tricornutum.


Assuntos
Proteínas de Algas/metabolismo , Citocinese , Diatomáceas/fisiologia , Diatomáceas/ultraestrutura , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Diatomáceas/citologia , Diatomáceas/metabolismo , Microscopia Eletrônica de Transmissão , Organismos Geneticamente Modificados/fisiologia , Transporte Proteico
7.
Protist ; 162(3): 462-81, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21600845

RESUMO

Over the last decades Phaeodactylum tricornutum has become a model to study diatom biology at the molecular level. Cells have the peculiarity to be pleiomorphic and it is thought that this character is triggered by culture conditions, although few quantitative studies have been performed and nothing is known at the molecular level. Our aim was to quantify the effect of growth conditions on cell morphology of different P. tricornutum strains by quantitative microscopy, cellular imaging, and non-targeted transcriptomics. We show that morphotype changes can be regulated by changing culture conditions, depending on the strain, and show a common trend of increased oval cell abundance as a response to stress. Examination of expressed sequence tags (ESTs) from triradiate cells infers the importance of osmoregulation in the maintenance of this morphotype, whereas ESTs derived from oval cells grown in hyposaline and low temperature conditions show a predominance of genes encoding typical components of stress pathways, especially in signaling, cell homeostasis and lipid metabolism. This work contributes to better understand the importance of the unique capability of morphotype conversion in P. tricornutum and its relevance in acclimation to changing environmental conditions.


Assuntos
Adaptação Fisiológica/fisiologia , Organismos Aquáticos/fisiologia , Diatomáceas/fisiologia , Estresse Fisiológico/fisiologia , Organismos Aquáticos/genética , Análise por Conglomerados , Diatomáceas/genética , Diatomáceas/crescimento & desenvolvimento , Diatomáceas/ultraestrutura , Meio Ambiente , Etiquetas de Sequências Expressas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Microscopia Eletrônica , Fenótipo , Salinidade , Transdução de Sinais/genética , Temperatura , Fatores de Tempo , Imagem com Lapso de Tempo , Transcriptoma
8.
Curr Opin Plant Biol ; 13(6): 623-30, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20970371

RESUMO

Studies of cell division in organisms derived from secondary endosymbiosis such as diatoms have revealed that the mechanisms are far from those found in more conventional model eukaryotes. An atypical acentriolar microtuble-organizing centre, centripetal cytokinesis combined with centrifugal cell wall neosynthesis, and the role of sex in relation to cell size restoration make diatoms an exciting system to re-investigate the evolution, differentiation and regulation of cell division. Such studies are further justified considering the ecological relevance of these microalgae in contemporary oceans and the need to understand the mechanisms controlling their growth and distribution in an environmental context. Recent work derived from genome-wide analyses on representative model diatoms reveals that the cell cycle is finely tuned to inputs derived from both endogenous and environmental signals.


Assuntos
Divisão Celular/fisiologia , Diatomáceas/citologia , Meio Ambiente , Diatomáceas/crescimento & desenvolvimento , Diatomáceas/metabolismo , Microtúbulos/metabolismo
9.
Genome Biol ; 11(8): R85, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20738856

RESUMO

BACKGROUND: Diatoms represent the predominant group of eukaryotic phytoplankton in the oceans and are responsible for around 20% of global photosynthesis. Two whole genome sequences are now available. Notwithstanding, our knowledge of diatom biology remains limited because only around half of their genes can be ascribed a function based onhomology-based methods. High throughput tools are needed, therefore, to associate functions with diatom-specific genes. RESULTS: We have performed a systematic analysis of 130,000 ESTs derived from Phaeodactylum tricornutum cells grown in 16 different conditions. These include different sources of nitrogen, different concentrations of carbon dioxide, silicate and iron, and abiotic stresses such as low temperature and low salinity. Based on unbiased statistical methods, we have catalogued transcripts with similar expression profiles and identified transcripts differentially expressed in response to specific treatments. Functional annotation of these transcripts provides insights into expression patterns of genes involved in various metabolic and regulatory pathways and into the roles of novel genes with unknown functions. Specific growth conditions could be associated with enhanced gene diversity, known gene product functions, and over-representation of novel transcripts. Comparative analysis of data from the other sequenced diatom, Thalassiosira pseudonana, helped identify several unique diatom genes that are specifically regulated under particular conditions, thus facilitating studies of gene function, genome annotation and the molecular basis of species diversity. CONCLUSIONS: The digital gene expression database represents a new resource for identifying candidate diatom-specific genes involved in processes of major ecological relevance.


Assuntos
Adaptação Fisiológica/genética , Diatomáceas/genética , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica/fisiologia , RNA Mensageiro/análise , Dióxido de Carbono/metabolismo , Meio Ambiente , Etiquetas de Sequências Expressas , Ferro/metabolismo , Dados de Sequência Molecular , Nitrogênio/metabolismo , Salinidade , Silicatos/metabolismo , Temperatura
10.
Proteomics ; 5(11): 2859-65, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15952231

RESUMO

A proteomics-based approach was used for characterizing wheat gliadins from an Italian common wheat (Triticum aestivum) cultivar. A two-dimensional gel electrophoresis (2-DE) map of roughly 40 spots was obtained by submitting the 70% alcohol-soluble crude protein extract to isoelectric focusing on immobilized pH gradient strips across two pH gradient ranges, i.e., 3-10 or pH 6-11, and to sodium dodecyl sulfate-polyacrylamide electrophoresis in the second dimension. The chymotryptic digest of each spot was characterized by matrix-assisted laser desorption/ionization-time of flight mass spectrometry and nano electrospray ionization-tandem mass spectrometry (MS/MS) analysis, providing a "peptide map" for each digest. The measured masses were subsequently sought in databases for sequences. For accurate identification of the parent protein, it was necessary to determine de novo sequences by MS/MS experiments on the peptides. By partial mass fingerprinting, we identified protein molecules such as alpha/beta-, gamma-, omega-gliadin, and high molecular weight-glutenin. The single spots along the 2-DE map were discriminated on the basis of their amino acid sequence traits. alpha-Gliadin, the most represented wheat protein in databases, was highly conserved as the relative N-terminal sequence of the components from the 2-DE map contained only a few silent amino acid substitutions. The other closely related gliadins were identified by sequencing internal peptide chains. The results gave insight into the complex nature of gliadin heterogeneity. This approach has provided us with sound reference data for differentiating gliadins amongst wheat varieties.


Assuntos
Gliadina/isolamento & purificação , Mapeamento de Peptídeos/métodos , Proteínas de Plantas/isolamento & purificação , Triticum/química , Sequência de Aminoácidos , Bases de Dados de Proteínas , Eletroforese em Gel Bidimensional/métodos , Gliadina/química , Glutens/química , Glutens/isolamento & purificação , Espectrometria de Massas/métodos , Dados de Sequência Molecular , Proteínas de Plantas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA