Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Environ Manage ; 119: 121-33, 2013 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-23474336

RESUMO

In Flanders and the Netherlands greenhouse production systems produce economically important quantities of vegetables, fruit and ornamentals. Indoor environmental control has resulted in high primary energy use. Until now, the research on saving primary energy in greenhouse systems has been mainly based on analysis of energy balances. However, according to the thermodynamic theory, an analysis based on the concept of exergy (free energy) and energy can result in new insights and primary energy savings. Therefore in this paper, we analyse the exergy and energy of various processes, inputs and outputs of a general greenhouse system. Also a total system analysis is then performed by linking the exergy analysis with a dynamic greenhouse climate growth simulation model. The exergy analysis indicates that some processes ("Sources") lie at the origin of several other processes, both destroying the exergy of primary energy inputs. The exergy destruction of these Sources is caused primarily by heat and vapour loss. Their impact can be compensated by exergy input from heating, solar radiation, or both. If the exergy destruction of these Sources is reduced, the necessary compensation can also be reduced. This can be accomplished through insulating the greenhouse and making the building more airtight. Other necessary Sources, namely transpiration and loss of CO2, have a low exergy destruction compared to the other Sources. They are therefore the best candidate for "pump" technologies ("vapour heat pump" and "CO2 pump") designed to have a low primary energy use. The combination of these proposed technologies results in an exergy efficient greenhouse with the highest primary energy savings. It can be concluded that exergy analyses add additional information compared to only energy analyses and it supports the development of primary energy efficient greenhouse systems.


Assuntos
Agricultura , Conservação de Recursos Energéticos/métodos , Meio Ambiente , Bélgica , Modelos Teóricos , Países Baixos , Termodinâmica
2.
Materials (Basel) ; 9(6)2016 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-28773532

RESUMO

It is long known that for high-velocity fluid flow in porous media, the relation between the pressure drop and the superficial velocity is not linear. Indeed, the classical Darcy law for shear stress dominated flow needs to be extended with a quadratic term, resulting in the empirical Darcy-Forchheimer model. Another approach is to simulate the foam numerically through the volume averaging technique. This leads to a natural separation of the total drag force into the contribution of the shear forces and the contribution of the pressure forces. Both representations of the total drag lead to the same result. The physical correspondence between both approaches is investigated in this work. The contribution of the viscous and pressure forces on the total drag is investigated using direct numerical simulations. Special attention is paid to the dependency on the velocity of these forces. The separation of the drag into its constituent terms on experimental grounds and for the volume average approach is unified. It is shown that the common approach to identify the linear term with the viscous forces and the quadratic term with the pressure forces is not correct.

3.
Materials (Basel) ; 9(2)2016 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-28787894

RESUMO

This paper reviews the available methods to study thermal applications with open-cell metal foam. Both experimental and numerical work are discussed. For experimental research, the focus of this review is on the repeatability of the results. This is a major concern, as most studies only report the dependence of thermal properties on porosity and a number of pores per linear inch (PPI-value). A different approach, which is studied in this paper, is to characterize the foam using micro tomography scans with small voxel sizes. The results of these scans are compared to correlations from the open literature. Large differences are observed. For the numerical work, the focus is on studies using computational fluid dynamics. A novel way of determining the closure terms is proposed in this work. This is done through a numerical foam model based on micro tomography scan data. With this foam model, the closure terms are determined numerically.

4.
Materials (Basel) ; 8(10): 6792-6805, 2015 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-28793601

RESUMO

Two differently-produced open-cell aluminum foams were compared to a commercially available finned heat sink. Further, an aluminum plate and block were tested as a reference. All heat sinks have the same base plate dimensions of four by six inches. The first foam was made by investment casting of a polyurethane preform and has a porosity of 0.946 and a pore density of 10 pores per linear inch. The second foam is manufactured by casting over a solvable core and has a porosity of 0.85 and a pore density of 2.5 pores per linear inch. The effects of orientation and radiative heat transfer are experimentally investigated. The heat sinks are tested in a vertical and horizontal orientation. The effect of radiative heat transfer is investigated by comparing a painted/anodized heat sink with an untreated one. The heat flux through the heat sink for a certain temperature difference between the environment and the heat sink's base plate is used as the performance indicator. For temperature differences larger than 30 °C, the finned heat sink outperforms the in-house-made aluminum foam heat sink on average by 17%. Furthermore, the in-house-made aluminum foam dissipates on average 12% less heat than the other aluminum foam for a temperature difference larger than 40 °C. By painting/anodizing the heat sinks, the heat transfer rate increased on average by 10% to 50%. Finally, the thermal performance of the horizontal in-house-made aluminum foam heat sink is up to 18% larger than the one of the vertical aluminum foam heat sink.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA