Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
BMC Biol ; 20(1): 6, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34996451

RESUMO

BACKGROUND: The cytoskeleton is a key component of the system responsible for transmitting mechanical cues from the cellular environment to the nucleus, where they trigger downstream responses. This communication is particularly relevant in embryonic stem (ES) cells since forces can regulate cell fate and guide developmental processes. However, little is known regarding cytoskeleton organization in ES cells, and thus, relevant aspects of nuclear-cytoskeletal interactions remain elusive. RESULTS: We explored the three-dimensional distribution of the cytoskeleton in live ES cells and show that these filaments affect the shape of the nucleus. Next, we evaluated if cytoskeletal components indirectly modulate the binding of the pluripotency transcription factor OCT4 to chromatin targets. We show that actin depolymerization triggers OCT4 binding to chromatin sites whereas vimentin disruption produces the opposite effect. In contrast to actin, vimentin contributes to the preservation of OCT4-chromatin interactions and, consequently, may have a pro-stemness role. CONCLUSIONS: Our results suggest roles of components of the cytoskeleton in shaping the nucleus of ES cells, influencing the interactions of the transcription factor OCT4 with the chromatin and potentially affecting pluripotency and cell fate.


Assuntos
Actinas , Cromatina , Actinas/metabolismo , Diferenciação Celular , Cromatina/metabolismo , Citoesqueleto/metabolismo , Células-Tronco Embrionárias/metabolismo , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Vimentina/metabolismo
2.
J Cell Sci ; 131(11)2018 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-29724915

RESUMO

Alzheimer disease (AD) pathology includes the accumulation of poly-ubiquitylated (also known as poly-ubiquitinated) proteins and failures in proteasome-dependent degradation. Whereas the distribution of proteasomes and its role in synaptic function have been studied, whether proteasome activity regulates the axonal transport and metabolism of the amyloid precursor protein (APP), remains elusive. By using live imaging in primary hippocampal neurons, we showed that proteasome inhibition rapidly and severely impairs the axonal transport of APP. Fluorescence cross-correlation analyses and membrane internalization blockage experiments showed that plasma membrane APP does not contribute to transport defects. Moreover, by western blotting and double-color APP imaging, we demonstrated that proteasome inhibition precludes APP axonal transport by enhancing its endo-lysosomal delivery, where ß-cleavage is induced. Taken together, we found that proteasomes control the distal transport of APP and can re-distribute Golgi-derived vesicles to the endo-lysosomal pathway. This crosstalk between proteasomes and lysosomes regulates the intracellular APP dynamics, and defects in proteasome activity can be considered a contributing factor that leads to abnormal APP metabolism in AD.This article has an associated First Person interview with the first author of the paper.


Assuntos
Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Axônios/metabolismo , Lisossomos/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Doença de Alzheimer/genética , Precursor de Proteína beta-Amiloide/genética , Animais , Transporte Axonal , Hipocampo/citologia , Hipocampo/metabolismo , Humanos , Lisossomos/genética , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Complexo de Endopeptidases do Proteassoma/genética
3.
IUBMB Life ; 69(1): 8-15, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27896901

RESUMO

Fluorescence fluctuation-based methods are non-invasive microscopy tools especially suited for the study of dynamical aspects of biological processes. These methods examine spontaneous intensity fluctuations produced by fluorescent molecules moving through the small, femtoliter-sized observation volume defined in confocal and multiphoton microscopes. The quantitative analysis of the intensity trace provides information on the processes producing the fluctuations that include diffusion, binding interactions, chemical reactions and photophysical phenomena. In this review, we present the basic principles of the most widespread fluctuation-based methods, discuss their implementation in standard confocal microscopes and briefly revise some examples of their applications to address relevant questions in living cells. The ultimate goal of these methods in the Cell Biology field is to observe biomolecules as they move, interact with targets and perform their biological action in the natural context. © 2016 IUBMB Life, 69(1):8-15, 2017.


Assuntos
Células/ultraestrutura , Citoplasma/ultraestrutura , Microscopia de Fluorescência , Imagem Molecular/métodos , Transporte Biológico , Fluorescência
4.
Biochim Biophys Acta Gen Subj ; 1861(12): 3178-3189, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28935608

RESUMO

BACKGROUND: Intracellular transport requires molecular motors that step along cytoskeletal filaments actively dragging cargoes through the crowded cytoplasm. Here, we explore the interplay of the opposed polarity motors kinesin-1 and cytoplasmic dynein during peroxisome transport along microtubules in Drosophila S2 cells. METHODS: We used single particle tracking with nanometer accuracy and millisecond time resolution to extract quantitative information on the bidirectional motion of organelles. The transport performance was studied in cells expressing a slow chimeric plus-end directed motor or the kinesin heavy chain. We also analyzed the influence of peroxisomes membrane fluidity in methyl-ß-ciclodextrin treated cells. The experimental data was also confronted with numerical simulations of two well-established tug of war scenarios. RESULTS AND CONCLUSIONS: The velocity distributions of retrograde and anterograde peroxisomes showed a multimodal pattern suggesting that multiple motor teams drive transport in either direction. The chimeric motors interfered with the performance of anterograde transport and also reduced the speed of the slowest retrograde team. In addition, increasing the fluidity of peroxisomes membrane decreased the speed of the slowest anterograde and retrograde teams. GENERAL SIGNIFICANCE: Our results support the existence of a crosstalk between opposed-polarity motor teams. Moreover, the slowest teams seem to mechanically communicate with each other through the membrane to trigger transport.


Assuntos
Microtúbulos/fisiologia , Peroxissomos/metabolismo , Animais , Transporte Biológico , Células Cultivadas , Drosophila , Fluidez de Membrana , beta-Ciclodextrinas/farmacologia
5.
Biochim Biophys Acta ; 1830(11): 5095-103, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23872153

RESUMO

BACKGROUND: Organelle transport is driven by the action of molecular motors. In this work, we studied the dynamics of organelles of different sizes with the aim of understanding the complex relation between organelle motion and microenvironment. METHODS: We used single particle tracking to obtain trajectories of melanosomes (pigmented organelles in Xenopus laevis melanophores). In response to certain hormones, melanosomes disperse in the cytoplasm or aggregate in the perinuclear region by the combined action of microtubule and actin motors. RESULTS AND CONCLUSIONS: Melanosome trajectories followed an anomalous diffusion model in which the anomalous diffusion exponent (α) provided information regarding the trajectories' topography and thus of the processes causing it. During aggregation, the directionality of big organelles was higher than that of small organelles and did not depend on the presence of either actin or intermediate filaments (IF). Depolymerization of IF significantly reduced α values of small organelles during aggregation but slightly affect their directionality during dispersion. GENERAL SIGNIFICANCE: Our results could be interpreted considering that the number of copies of active motors increases with organelle size. Transport of big organelles was not influenced by actin or IF during aggregation showing that these organelles are moved processively by the collective action of dynein motors. Also, we found that intermediate filaments enhance the directionality of small organelles suggesting that this network keeps organelles close to the tracks allowing their efficient reattachment. The higher directionality of small organelles during dispersion could be explained considering the better performance of kinesin-2 vs. dynein at the single molecule level.


Assuntos
Proteínas Motores Moleculares/metabolismo , Tamanho das Organelas/fisiologia , Organelas/fisiologia , Actinas/metabolismo , Animais , Transporte Biológico , Células Cultivadas , Microambiente Celular/fisiologia , Difusão , Dineínas/metabolismo , Filamentos Intermediários/metabolismo , Melanóforos/metabolismo , Melanóforos/fisiologia , Melanossomas/metabolismo , Melanossomas/fisiologia , Microtúbulos/metabolismo , Microtúbulos/fisiologia , Organelas/metabolismo , Relação Estrutura-Atividade , Xenopus laevis
6.
Sci Rep ; 13(1): 4065, 2023 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-36906690

RESUMO

The interactions between mitochondria and the cytoskeleton have been found to alter mitochondrial function; however, the mechanisms underlying this phenomenon are largely unknown. Here, we explored how the integrity of the cytoskeleton affects the cellular organization, morphology and mobility of mitochondria in Xenopus laevis melanocytes. Cells were imaged in control condition and after different treatments that selectively affect specific cytoskeletal networks (microtubules, F-actin and vimentin filaments). We observed that mitochondria cellular distribution and local orientation rely mostly on microtubules, positioning these filaments as the main scaffolding of mitochondrial organization. We also found that cytoskeletal networks mold mitochondria shapes in distinct ways: while microtubules favor more elongated organelles, vimentin and actin filaments increase mitochondrial bending, suggesting the presence of mechanical interactions between these filaments and mitochondria. Finally, we identified that microtubule and F-actin networks play opposite roles in mitochondria shape fluctuations and mobility, with microtubules transmitting their jittering to the organelles and F-actin restricting the organelles motion. All our results support that cytoskeleton filaments interact mechanically with mitochondria and transmit forces to these organelles molding their movements and shapes.


Assuntos
Actinas , Citoesqueleto , Citoesqueleto de Actina , Filamentos Intermediários , Microtúbulos , Vimentina , Animais
7.
Biophys Rev ; 15(4): 671-683, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37681098

RESUMO

Mechanical forces drive and modulate a wide variety of processes in eukaryotic cells including those occurring in the nucleus. Relevantly, forces are fundamental during development since they guide lineage specifications of embryonic stem cells. A sophisticated macromolecular machinery transduces mechanical stimuli received at the cell surface into a biochemical output; a key component in this mechanical communication is the cytoskeleton, a complex network of biofilaments in constant remodeling that links the cell membrane to the nuclear envelope. Recent evidence highlights that forces transmitted through the cytoskeleton directly affect the organization of chromatin and the accessibility of transcription-related molecules to their targets in the DNA. Consequently, mechanical forces can directly modulate transcription and change gene expression programs. Here, we will revise the biophysical toolbox involved in the mechanical communication with the cell nucleus and discuss how mechanical forces impact on the organization of this organelle and more specifically, on transcription. We will also discuss how live-cell fluorescence imaging is producing exquisite information to understand the mechanical response of cells and to quantify the landscape of interactions of transcription factors with chromatin in embryonic stem cells. These studies are building new biophysical insights that could be fundamental to achieve the goal of manipulating forces to guide cell differentiation in culture systems.

8.
J Phys Condens Matter ; 34(9)2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34847540

RESUMO

Uncovering the link between mitochondrial morphology, dynamics, positioning and function is challenging. Mitochondria are very flexible organelles that are subject to tension and compression within cells. Recent findings highlighted the importance of these mechanical aspects in the regulation of mitochondria dynamics, arising the question on which are the processes and mechanisms involved in their shape remodeling. In this work we explored in detail the morphological changes and spatio-temporal fluctuations of these organelles in livingXenopus laevismelanophores, a well-characterized cellular model. We developed an automatic method for the classification of mitochondria shapes based on the analysis of the curvature of the contour shape from confocal microscopy images. A persistence length of 2.1µm was measured, quantifying, for the first time, the bending plasticity of mitochondria in their cellular environment. The shape evolution at the single organelle level was followed during a few minutes revealing that mitochondria can bend and unbend in the seconds timescale. Furthermore, the inspection of confocal movies simultaneously registering fluorescent mitochondria and microtubules suggests that the cytoskeleton network architecture and dynamics play a significant role in mitochondria shape remodeling and fluctuations. For instance changes from sinuous to elongated organelles related to transitions from confined behavior to fast directed motion along microtubule tracks were observed.


Assuntos
Citoesqueleto , Microtúbulos , Citoesqueleto/metabolismo , Microscopia Confocal , Microtúbulos/metabolismo , Mitocôndrias/fisiologia , Organelas
9.
Biochim Biophys Acta Mol Cell Res ; 1867(1): 118572, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31678117

RESUMO

Microtubule-dependent motors usually work together to transport organelles through the crowded intracellular milieu. Thus, transport performance depends on how motors organize on the cargo. Unfortunately, the lack of methodologies capable of measuring this organization in cells determines that many aspects of the collective action of motors remain elusive. Here, we combined fluorescence fluctuations and single particle tracking techniques to address how kinesins organize on rod-like mitochondria moving along microtubules in cells. This methodology simultaneously provides mitochondria trajectories and EGFP-tagged kinesin-1 intensity at different mitochondrial positions with millisecond resolution. We show that kinesin exchange at the mitochondrion surface is within ~100 ms and depends on the organelle speed. During anterograde transport, the mitochondrial leading tip presents slower motor exchange in comparison to the rear tip. In contrast, retrograde mitochondria show similar exchange rates of kinesins at both tips. Numerical simulations provide theoretical support to these results and evidence that motors do not share the load equally during intracellular transport.


Assuntos
Cinesinas/metabolismo , Microtúbulos/fisiologia , Organelas/metabolismo , Animais , Transporte Biológico , Células Cultivadas , Drosophila , Fluorescência , Cinética , Microtúbulos/metabolismo , Espectrometria de Fluorescência
10.
Biosci Rep ; 38(3)2018 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-29752335

RESUMO

Molecular motors play relevant roles on the regulation of mitochondria size and shape, essential properties for the cell homeostasis. In this work, we tracked single rod-shaped mitochondria with nanometer precision to explore the performance of microtubule motor teams during processive anterograde and retrograde transport. We analyzed simultaneously the organelle size and verified that mitochondria retracted during retrograde transport with their leading tip moving slower in comparison with the rear tip. In contrast, mitochondria preserved their size during anterograde runs indicating a different performance of plus-end directed teams. These results were interpreted considering the different performance of dynein and kinesin teams and provide valuable information on the collective action of motors during mitochondria transport.


Assuntos
Homeostase/genética , Microtúbulos/genética , Mitocôndrias/genética , Forma das Organelas/genética , Animais , Dineínas/genética , Cinesinas/genética , Microtúbulos/metabolismo , Análise de Célula Única , Xenopus laevis/genética
12.
Mech Dev ; 154: 60-63, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29753812

RESUMO

Pluripotent stem cells (PSCs) are capable of self-renewing and producing all cell types derived from the three germ layers in response to developmental cues, constituting an important promise for regenerative medicine. Pluripotency depends on specific transcription factors (TFs) that induce genes required to preserve the undifferentiated state and repress other genes related to differentiation. The transcription machinery and regulatory components such as TFs are recruited dynamically on their target genes making it essential exploring their dynamics in living cells to understand the transcriptional output. Non-invasive and very sensitive fluorescence microscopy methods are making it possible visualizing the dynamics of TFs in living specimens, complementing the information extracted from studies in fixed specimens and bulk assays. In this work, we briefly describe the basis of these microscopy methods and review how they contributed to our knowledge of the function of TFs relevant to embryo development and cell differentiation in a variety of systems ranging from single cells to whole organisms.


Assuntos
Desenvolvimento Embrionário/fisiologia , Fatores de Transcrição/metabolismo , Animais , Diferenciação Celular/fisiologia , Camadas Germinativas/embriologia , Camadas Germinativas/metabolismo , Humanos , Microscopia de Fluorescência/métodos , Células-Tronco Pluripotentes/enzimologia , Células-Tronco Pluripotentes/metabolismo , Transcrição Gênica/fisiologia
13.
FEBS Lett ; 589(19 Pt B): 2763-8, 2015 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-26247430

RESUMO

The mechanisms involved in bidirectional transport along microtubules remain largely unknown. We explored the collective action of kinesin-2 and dynein motors during transport of melanosomes in Xenopus laevis melanophores. These motors are attached to organelles through accessory proteins establishing a complex molecular linker. We determined both the stiffness of this linker and the organelles speed and observed that these parameters depended on the organelle size and cargo direction. Our results suggest that melanosome transport is driven by two dissimilar teams: whereas dynein motors compete with kinesin-2 affecting the properties of plus-end directed organelles, kinesin-2 does not seem to play a similar role during minus-end transport.


Assuntos
Dineínas do Citoplasma/metabolismo , Cinesinas/metabolismo , Melanossomas/metabolismo , Proteínas de Xenopus/metabolismo , Animais , Transporte Biológico , Xenopus laevis/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA