RESUMO
OBJECTIVE: This study explores how older adults respond to audiovisual virtual reality (VR) and perceive its usefulness to their lives. METHOD: Focus groups were conducted with residents of a retirement community after they viewed two audiovisual VR simulations (n = 41). Thematic analysis was used to identify patterns in responses. RESULTS: Older adults described positive and negative emotional reactions to aspects of the VR experience, articulated content preferences, shared ideas to improve the usability of the equipment, and identified facilitators and barriers that influenced perceived usefulness. Recommendations for improving this technology include maximizing the positive aspects of VR through increasing interactivity, facilitating socializing with friends or family, and enhancing older adults' ease of use. Desired content of simulations involved travel, continuing education, reminiscence, and self-care/therapy. CONCLUSION: Virtual reality was reviewed positively, yet modifications are necessary to facilitate optimal user experience and potential benefit for this population. CLINICAL IMPLICATIONS: As older adults are interested in using VR, especially if poor health prevents the continuation of desirable activities or new experiences, it is important to respond to older adults' preferences and remove barriers that limit use and enjoyment.
Assuntos
Percepção/fisiologia , Tecnologia/instrumentação , Realidade Virtual , Idoso , Idoso de 80 Anos ou mais , Atitude Frente aos Computadores , Simulação por Computador , Feminino , Grupos Focais , Humanos , Relações Interpessoais , Masculino , Pessoa de Meia-Idade , Prazer/fisiologia , SocializaçãoRESUMO
BACKGROUND: The gamification of digital health provisions for older adults (eg, for rehabilitation) is a growing trend; however, many older adults are not familiar with digital games. This lack of experience could cause stress and thus impede participants' motivations to adopt these technologies. OBJECTIVE: This crossover longitudinal multifactorial study aimed to examine the interactions between game difficulty, appraisal, cognitive ability, and physiological and cognitive responses that indicate game stress using the Affective Game Planning for Health Applications framework. METHODS: A total of 18 volunteers (mean age 71 years, SD 4.5; 12 women) completed a three-session study to evaluate different genres of games in increasing order of difficulty (S1-BrainGame, S2-CarRace, and S3-Exergame). Each session included an identical sequence of activities (t1-Baseline, t2-Picture encode, t3-Play, t4-Stroop test, t5-Play, and t6-Picture recall), a repeated sampling of salivary cortisol, and time-tagged ambulatory data from a wrist-worn device. Generalized estimating equations were used to investigate the effect of session×activity or session×activity×cognitive ability on physiology and cognitive performance. Scores derived from the Montreal Cognitive Assessment (MoCA) test were used to define cognitive ability (MoCA-high: MoCA>27, n=11/18). Kruskal-Wallis tests were used to test session or session×group effects on the scores of the postgame appraisal questionnaire. RESULTS: Session×activity effects were significant on all ambulatory measures (χ210>20; P<.001) other than cortisol (P=.37). Compared with S1 and S2, S3 was associated with approximately 10 bpm higher heart rate (P<.001) and approximately 5 muS higher electrodermal activity (P<.001), which were both independent of the movement caused by the exergame. Compared with S1, we measured a moderate but statistically significant drop in the rate of hits in immediate recall and rate of delayed recall in S3. The low-MoCA group did not differ from the high-MoCA group in general characteristics (age, general self-efficacy, and perceived stress) but was more likely to agree with statements such as digital games are too hard to learn. In addition, the low-MoCA group was more likely to dislike the gaming experience and find it useless, uninteresting, and visually more intense (χ21>4; P<.04). Group differences in ambulatory signals did not reach statistical significance; however, the rate of cortisol decline with respect to the baseline was significantly larger in the low-MoCA group. CONCLUSIONS: Our results show that the experience of playing digital games was not stressful for our participants. Comparatively, the neurophysiological effects of exergame were more pronounced in the low-MoCA group, suggesting greater potential of this genre of games for cognitive and physical stimulation by gamified interventions; however, the need for enjoyment of this type of challenging game must be addressed.
RESUMO
User retention is the first challenge in introducing any information and communication technologies (ICT) for health applications, particularly for seniors who are increasingly targeted as beneficiaries of such technologies. Interaction with digital technologies may be too stressful to older adults to guarantee their adoption in their routine selfcare. The second challenge, which also relates to adoption, is to supply empirical evidence that support the expectations of their beneficial outcomes. To address the first challenge, persuasive technologies such as serious games (SGs) are increasingly promoted as ludic approaches to deliver assistive care to older adults. However, there are no standards yet to assess the efficacy of different genres of games across populations, or compare and contrast variations in health outcomes arising from user interface design and user experience. For the past 3 decades, research has focused either on qualitative assessment of the appeal of digital games for seniors (by game designers) or on the quantitative evaluation of their clinical efficacy (by clinical researchers). The consensus is that interindividual differences play a key role in whether games can be useful or not for different individuals. Our challenge is to design SGs that retain their users long enough to sustain beneficial transfer effects. We propose to add a neuropsychological experimental framework (based on the appraisal theory of stress and coping) to a Gerontoludic design framework (that emphasizes designing positive and meaningful gaming experience over benefit-centric ones) in order to capture data to guide SG game development. Affective Game Planning for Health Applications (AGPHA) adds a model-driven mixed-methods experimental stage to a user-centered mechanics-dynamics-aesthetics game-design cycle. This intersectoral framework is inspired by latest trends in the fields of neuroimaging and neuroinformatics that grapple with similar challenges related to the psychobiological context of an individual's behaviors. AGPHA aims to bring users, designers, clinicians, and researchers together to generate a common data repository that consists of 4 components to define, design, evaluate, and document SGs. By unifying efforts under a standard approach, we will accelerate innovations in persuasive and efficacious ICTs for the aging population.
RESUMO
The use of Serious Games (SG) in the health domain is expanding. In the field of neurodegenerative disorders (ND) such as Alzheimer's disease, SG are currently employed both to support and improve the assessment of different functional and cognitive abilities, and to provide alternative solutions for patients' treatment, stimulation, and rehabilitation. As the field is quite young, recommendations on the use of SG in people with ND are still rare. In 2014 we proposed some initial recommendations (Robert et al., 2014). The aim of the present work was to update them, thanks to opinions gathered by experts in the field during an expert Delphi panel. Results confirmed that SG are adapted to elderly people with mild cognitive impairment (MCI) and dementia, and can be employed for several purposes, including assessment, stimulation, and improving wellbeing, with some differences depending on the population (e.g., physical stimulation may be better suited for people with MCI). SG are more adapted for use with trained caregivers (both at home and in clinical settings), with a frequency ranging from 2 to 4 times a week. Importantly, the target of SG, their frequency of use and the context in which they are played depend on the SG typology (e.g., Exergame, cognitive game), and should be personalized with the help of a clinician.
RESUMO
We report the improved thermal stability of carbon alloyed Cu0.6Te0.4 for resistive memory applications. Copper-tellurium-based memory cells show enhanced switching behavior, but the complex sequence of phase transformations upon annealing is disadvantageous for integration in a device. We show that addition of about 40 at % carbon to the Cu-telluride layer results in an amorphous material up to 360 °C. This material was then integrated in a TiN/Cu0.6Te0.4-C/Al2O3/Si resistive memory cell, and compared to pure Cu0.6Te0.4. Very attractive endurance (up to 1 × 10(3) cycles) and retention properties (up to 1 × 10(4) s at 85 °C) are observed. The enhanced thermal stability and good switching behavior make this material a promising candidate for integration in memory devices.