Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Pharmacol Rev ; 75(6): 1233-1318, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37586884

RESUMO

The NR superfamily comprises 48 transcription factors in humans that control a plethora of gene network programs involved in a wide range of physiologic processes. This review will summarize and discuss recent progress in NR biology and drug development derived from integrating various approaches, including biophysical techniques, structural studies, and translational investigation. We also highlight how defective NR signaling results in various diseases and disorders and how NRs can be targeted for therapeutic intervention via modulation via binding to synthetic lipophilic ligands. Furthermore, we also review recent studies that improved our understanding of NR structure and signaling. SIGNIFICANCE STATEMENT: Nuclear receptors (NRs) are ligand-regulated transcription factors that are critical regulators of myriad physiological processes. NRs serve as receptors for an array of drugs, and in this review, we provide an update on recent research into the roles of these drug targets.


Assuntos
Farmacologia Clínica , Humanos , Receptores Citoplasmáticos e Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Transporte , Ligantes
2.
J Biol Chem ; 299(12): 105475, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37981208

RESUMO

Heterozygous GRN (progranulin) mutations cause frontotemporal dementia (FTD) due to haploinsufficiency, and increasing progranulin levels is a major therapeutic goal. Several microRNAs, including miR-29b, negatively regulate progranulin protein levels. Antisense oligonucleotides (ASOs) are emerging as a promising therapeutic modality for neurological diseases, but strategies for increasing target protein levels are limited. Here, we tested the efficacy of ASOs as enhancers of progranulin expression by sterically blocking the miR-29b binding site in the 3' UTR of the human GRN mRNA. We found 16 ASOs that increase progranulin protein in a dose-dependent manner in neuroglioma cells. A subset of these ASOs also increased progranulin protein in iPSC-derived neurons and in a humanized GRN mouse model. In FRET-based assays, the ASOs effectively competed for miR-29b from binding to the GRN 3' UTR RNA. The ASOs increased levels of newly synthesized progranulin protein by increasing its translation, as revealed by polysome profiling. Together, our results demonstrate that ASOs can be used to effectively increase target protein levels by partially blocking miR binding sites. This ASO strategy may be therapeutically feasible for progranulin-deficient FTD as well as other conditions of haploinsufficiency.


Assuntos
Demência Frontotemporal , MicroRNAs , Oligonucleotídeos Antissenso , Progranulinas , Animais , Humanos , Camundongos , Regiões 3' não Traduzidas , Sítios de Ligação , Demência Frontotemporal/genética , Peptídeos e Proteínas de Sinalização Intercelular/genética , MicroRNAs/genética , Mutação , Oligonucleotídeos Antissenso/genética , Progranulinas/genética , RNA Mensageiro/genética
3.
FASEB J ; 33(7): 8280-8293, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31021670

RESUMO

The HIV-1 transactivation protein (Tat) binds the HIV mRNA transactivation responsive element (TAR), regulating transcription and reactivation from latency. Drugs against Tat are unfortunately not clinically available. We reported that didehydro-cortistatin A (dCA) inhibits HIV-1 Tat activity. In human CD4+ T cells isolated from aviremic individuals and in the humanized mouse model of latency, combining dCA with antiretroviral therapy accelerates HIV-1 suppression and delays viral rebound upon treatment interruption. This drug class is amenable to block-and-lock functional cure approaches, aimed at a durable state of latency. Simian immunodeficiency virus (SIV) infection of rhesus macaques (RhMs) is the best-characterized model for AIDS research. Here, we demonstrate, using in vitro and cell-based assays, that dCA directly binds to SIV Tat's basic domain. dCA specifically inhibits SIV Tat binding to TAR, but not a Tat-Rev fusion protein, which activates transcription when Rev binds to its cognate RNA binding site replacing the apical region of TAR. Tat-TAR inhibition results in loss of RNA polymerase II recruitment to the SIV promoter. Importantly, dCA potently inhibits SIV reactivation from latently infected Hut78 cells and from primary CD4+ T cells explanted from SIVmac239-infected RhMs. In sum, dCA's remarkable breadth of activity encourages SIV-infected RhM use for dCA preclinical evaluation.-Mediouni, S., Kessing, C. F., Jablonski, J. A., Thenin-Houssier, S., Clementz, M., Kovach, M. D., Mousseau, G., de Vera, I.M.S., Li, C., Kojetin, D. J., Evans, D. T., Valente, S. T. The Tat inhibitor didehydro-cortistatin A suppresses SIV replication and reactivation.


Assuntos
Linfócitos T CD4-Positivos/virologia , Produtos do Gene tat/antagonistas & inibidores , Síndrome de Imunodeficiência Adquirida dos Símios/metabolismo , Vírus da Imunodeficiência Símia/fisiologia , Ativação Viral/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Animais , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/patologia , Produtos do Gene tat/metabolismo , Células HEK293 , Células HeLa , Compostos Heterocíclicos de 4 ou mais Anéis , Humanos , Isoquinolinas , Macaca mulatta , Regiões Promotoras Genéticas , Síndrome de Imunodeficiência Adquirida dos Símios/patologia , Sequências Repetidas Terminais
4.
Nucleic Acids Res ; 45(14): 8596-8608, 2017 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-28591827

RESUMO

The glucocorticoid receptor (GR) is a ligand-regulated transcription factor that controls the expression of extensive gene networks, driving both up- and down-regulation. GR utilizes multiple DNA-binding-dependent and -independent mechanisms to achieve context-specific transcriptional outcomes. The DNA-binding-independent mechanism involves tethering of GR to the pro-inflammatory transcription factor activator protein-1 (AP-1) through protein-protein interactions. This mechanism has served as the predominant model of GR-mediated transrepression of inflammatory genes. However, ChIP-seq data have consistently shown GR to occupy AP-1 response elements (TREs), even in the absence of AP-1. Therefore, the current model is insufficient to explain GR action at these sites. Here, we show that GR regulates a subset of inflammatory genes in a DNA-binding-dependent manner. Using structural biology and biochemical approaches, we show that GR binds directly to TREs via sequence-specific contacts to a GR-binding sequence (GBS) half-site found embedded within the TRE motif. Furthermore, we show that GR-mediated transrepression observed at TRE sites to be DNA-binding-dependent. This represents a paradigm shift in the field, showing that GR uses multiple mechanisms to suppress inflammatory gene expression. This work further expands our understanding of this complex multifaceted transcription factor.


Assuntos
Regulação da Expressão Gênica , Inflamação/genética , Receptores de Glucocorticoides/genética , Elementos de Resposta/genética , Fator de Transcrição AP-1/genética , Sequência de Bases , Sítios de Ligação/genética , Linhagem Celular Tumoral , Cristalografia por Raios X , DNA/química , DNA/genética , DNA/metabolismo , Células HEK293 , Humanos , Modelos Moleculares , Mutação , Conformação de Ácido Nucleico , Ligação Proteica , Estrutura Terciária de Proteína , Receptores de Glucocorticoides/química , Receptores de Glucocorticoides/metabolismo , Fator de Transcrição AP-1/química , Fator de Transcrição AP-1/metabolismo
5.
Proc Natl Acad Sci U S A ; 113(2): 326-31, 2016 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-26715749

RESUMO

Many genomes contain families of paralogs--proteins with divergent function that evolved from a common ancestral gene after a duplication event. To understand how paralogous transcription factors evolve divergent DNA specificities, we examined how the glucocorticoid receptor and its paralogs evolved to bind activating response elements [(+)GREs] and negative glucocorticoid response elements (nGREs). We show that binding to nGREs is a property of the glucocorticoid receptor (GR) DNA-binding domain (DBD) not shared by other members of the steroid receptor family. Using phylogenetic, structural, biochemical, and molecular dynamics techniques, we show that the ancestral DBD from which GR and its paralogs evolved was capable of binding both nGRE and (+)GRE sequences because of the ancestral DBD's ability to assume multiple DNA-bound conformations. Subsequent amino acid substitutions in duplicated daughter genes selectively restricted protein conformational space, causing this dual DNA-binding specificity to be selectively enhanced in the GR lineage and lost in all others. Key substitutions that determined the receptors' response element-binding specificity were far from the proteins' DNA-binding interface and interacted epistatically to change the DBD's function through DNA-induced allosteric mechanisms. These amino acid substitutions subdivided both the conformational and functional space of the ancestral DBD among the present-day receptors, allowing a paralogous family of transcription factors to control disparate transcriptional programs despite high sequence identity.


Assuntos
DNA/metabolismo , Homologia de Sequência de Aminoácidos , Fatores de Transcrição/metabolismo , Regulação Alostérica , Substituição de Aminoácidos , Sequência de Bases , Células HeLa , Humanos , Dados de Sequência Molecular , Ligação Proteica , Estrutura Terciária de Proteína , Receptores de Glucocorticoides/metabolismo , Receptores de Mineralocorticoides/metabolismo , Elementos de Resposta/genética , Especificidade por Substrato , Fatores de Transcrição/química
6.
Antimicrob Agents Chemother ; 60(4): 2195-208, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26810656

RESUMO

The human immunodeficiency virus type 1 (HIV-1) capsid plays crucial roles in HIV-1 replication and thus represents an excellent drug target. We developed a high-throughput screening method based on a time-resolved fluorescence resonance energy transfer (HTS-TR-FRET) assay, using the C-terminal domain (CTD) of HIV-1 capsid to identify inhibitors of capsid dimerization. This assay was used to screen a library of pharmacologically active compounds, composed of 1,280in vivo-active drugs, and identified ebselen [2-phenyl-1,2-benzisoselenazol-3(2H)-one], an organoselenium compound, as an inhibitor of HIV-1 capsid CTD dimerization. Nuclear magnetic resonance (NMR) spectroscopic analysis confirmed the direct interaction of ebselen with the HIV-1 capsid CTD and dimer dissociation when ebselen is in 2-fold molar excess. Electrospray ionization mass spectrometry revealed that ebselen covalently binds the HIV-1 capsid CTD, likely via a selenylsulfide linkage with Cys198 and Cys218. This compound presents anti-HIV activity in single and multiple rounds of infection in permissive cell lines as well as in primary peripheral blood mononuclear cells. Ebselen inhibits early viral postentry events of the HIV-1 life cycle by impairing the incoming capsid uncoating process. This compound also blocks infection of other retroviruses, such as Moloney murine leukemia virus and simian immunodeficiency virus, but displays no inhibitory activity against hepatitis C and influenza viruses. This study reports the use of TR-FRET screening to successfully identify a novel capsid inhibitor, ebselen, validating HIV-1 capsid as a promising target for drug development.


Assuntos
Fármacos Anti-HIV/farmacologia , Azóis/farmacologia , Proteínas do Capsídeo/antagonistas & inibidores , Capsídeo/efeitos dos fármacos , HIV-1/efeitos dos fármacos , Compostos Organosselênicos/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia , Fármacos Anti-HIV/química , Azóis/química , Sítios de Ligação , Capsídeo/química , Capsídeo/metabolismo , Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , Bases de Dados de Produtos Farmacêuticos , Transferência Ressonante de Energia de Fluorescência , HIV-1/fisiologia , Células HeLa , Ensaios de Triagem em Larga Escala , Humanos , Isoindóis , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/virologia , Vírus da Leucemia Murina de Moloney/efeitos dos fármacos , Vírus da Leucemia Murina de Moloney/fisiologia , Compostos Organosselênicos/química , Ligação Proteica , Domínios Proteicos , Multimerização Proteica/efeitos dos fármacos , Estrutura Secundária de Proteína , Vírus da Imunodeficiência Símia/efeitos dos fármacos , Vírus da Imunodeficiência Símia/fisiologia , Bibliotecas de Moléculas Pequenas/química , Montagem de Vírus/efeitos dos fármacos , Montagem de Vírus/fisiologia , Replicação Viral/efeitos dos fármacos
7.
Phys Chem Chem Phys ; 18(8): 5819-31, 2016 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-26489725

RESUMO

The conformational landscape of HIV-1 protease (PR) can be experimentally characterized by pulsed-EPR double electron-electron resonance (DEER). For this characterization, nitroxide spin labels are attached to an engineered cysteine residue in the flap region of HIV-1 PR. DEER distance measurements from spin-labels contained within each flap of the homodimer provide a detailed description of the conformational sampling of apo-enzyme as well as induced conformational shifts as a function of inhibitor binding. The distance distribution profiles are further interpreted in terms of a conformational ensemble scheme that consists of four unique states termed "curled/tucked", "closed", "semi-open" and "wide-open" conformations. Reported here are the DEER results for a drug-resistant variant clinical isolate sequence, V6, in the presence of FDA approved protease inhibitors (PIs) as well as a non-hydrolyzable substrate mimic, CaP2. Results are interpreted in the context of the current understanding of the relationship between conformational sampling, drug resistance, and kinetic efficiency of HIV-1PR as derived from previous DEER and kinetic data for a series of HIV-1PR constructs that contain drug-pressure selected mutations or natural polymorphisms. Specifically, these collective results support the notion that inhibitor-induced closure of the flaps correlates with inhibitor efficiency and drug resistance. This body of work also suggests DEER as a tool for studying conformational sampling in flexible enzymes as it relates to function.


Assuntos
Espectroscopia de Ressonância de Spin Eletrônica , Protease de HIV/química , HIV-1/química , Sequência de Aminoácidos , Clonagem Molecular , Resistência a Medicamentos , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Protease de HIV/genética , HIV-1/efeitos dos fármacos , Humanos , Modelos Moleculares , Conformação Proteica
8.
Biochemistry ; 52(19): 3278-88, 2013 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-23566104

RESUMO

Enzyme targets in rapidly replicating systems, such as retroviruses, commonly respond to drug-selective pressure with mutations arising in the active site pocket that limit inhibitor effectiveness by introducing steric hindrance or by eliminating essential molecular interactions. However, these primary mutations are disposed to compromising pathogenic fitness. Emerging secondary mutations, which are often found outside of the binding cavity, may or can restore fitness while maintaining drug resistance. The accumulated drug pressure selected mutations could have an indirect effect in the development of resistance, such as altering protein flexibility or the dynamics of protein-ligand interactions. Here, we show that accumulation of mutations in a drug-resistant HIV-1 protease (HIV-1 PR) variant, D30N/M36I/A71V, changes the fractional occupancy of the equilibrium conformational sampling ensemble. Correlations are made among populations of the conformational states, namely, closed-like, semiopen, and open-like, with inhibition constants, as well as kinetic parameters. Mutations that stabilize a closed-like conformation correlate with enzymes of lowered activity and with higher affinity for inhibitors, which is corroborated by a further increase in the fractional occupancy of the closed state upon addition of inhibitor or substrate-mimic. Cross-resistance is found to correlate with combinations of mutations that increase the population of the open-like conformations at the expense of the closed-like state while retaining native-like occupancy of the semiopen population. These correlations suggest that at least three states are required in the conformational sampling model to establish the emergence of drug resistance in HIV-1 PR. More importantly, these results shed light on a possible mechanism whereby mutations combine to impart drug resistance while maintaining catalytic activity.


Assuntos
Protease de HIV/química , HIV-1/efeitos dos fármacos , HIV-1/enzimologia , Farmacorresistência Viral/genética , Espectroscopia de Ressonância de Spin Eletrônica , Estabilidade Enzimática/genética , Protease de HIV/genética , Protease de HIV/metabolismo , Inibidores da Protease de HIV/farmacologia , HIV-1/genética , Humanos , Cinética , Modelos Moleculares , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Mutação , Conformação Proteica , Termodinâmica
9.
Mol Microbiol ; 86(4): 971-87, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22970855

RESUMO

Proteins with JAB1/MPN/MOV34 metalloenzyme (JAMM/MPN+) domains are widespread among all domains of life, yet poorly understood. Here we report the purification and characterization of an archaeal JAMM/MPN+ domain protein (HvJAMM1) from Haloferax volcanii that cleaves ubiquitin-like small archaeal modifier proteins (SAMP1/2) from protein conjugates. HvJAMM1 cleaved SAMP1/2 conjugates generated in H. volcanii as well as isopeptide- and linear-linked SAMP1-MoaE in purified form. Cleavage of linear linked SAMP1-MoaE was dependent on the presence of the SAMP domain and the C-terminal VSGG motif of this domain. While HvJAMM1 was inhibited by size exclusion chromatography and metal chelators, its activity could be restored by addition of excess ZnCl2 . HvJAMM1 residues (Glu31, His88, His90, Ser98 and Asp101) that were conserved with the JAMM/MPN+ active-site motif were required for enzyme activity. Together, these results provide the first example of a JAMM/MPN+ zinc metalloprotease that independently catalyses the cleavage of ubiquitin-like (isopeptide and linear) bonds from target proteins. In archaea, HvJAMM1 likely regulates sampylation and the pools of 'free' SAMP available for protein modification. HvJAMM1-type proteins are thought to release the SAMPs from proteins modified post-translationally as well as those synthesized as domain fusions.


Assuntos
Proteínas Arqueais/metabolismo , Haloferax volcanii/enzimologia , Metaloendopeptidases/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Proteínas Arqueais/isolamento & purificação , Cloretos/metabolismo , Análise Mutacional de DNA , Ativadores de Enzimas/metabolismo , Haloferax volcanii/genética , Haloferax volcanii/metabolismo , Metaloendopeptidases/genética , Metaloendopeptidases/isolamento & purificação , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutação de Sentido Incorreto , Proteólise , Compostos de Zinco/metabolismo
10.
Eur J Med Chem ; 258: 115582, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37421886

RESUMO

Estrogen-related receptors (ERR) are an orphan nuclear receptor sub-family that play a critical role in regulating gene transcription for several physiological processes including mitochondrial function, cellular energy utilization and homeostasis. They have also been implicated to play a role in several pathological conditions. Herein, we report the identification, synthesis, structure-activity relationships and pharmacological evaluation of a new chemical series of potent pan-ERR agonists. This template was designed for ERRγ starting from the known acyl hydrazide template and compounds such as agonist GSK-4716 employing a structure-based drug design approach. This led to the preparation of a series of 2,5-disubstituted thiophenes from which several were found to be potent agonists of ERRγ in cell-based co-transfection assays. Additionally, direct binding to ERRγ was established through 1H NMR protein-ligand binding experiments. Compound optimization revealed that the phenolic or aniline groups could be replaced with a boronic acid moiety, which was able to maintain activity and demonstrated improved metabolic stability in microsomal in vitro assays. Further pharmacological evaluation of these compounds showed that they had roughly equivalent agonist activity on ERR isoforms α and ß representing an ERR pan-agonist profile. One potent agonist, SLU-PP-915 (10s), which contained a boronic acid moiety was profiled in gene expression assays and found to significantly upregulate the expression of ERR target genes such as peroxisome-proliferator activated receptor γ co-activators-1α, lactate dehydrogenase A, DNA damage inducible transcript 4 and pyruvate dehydrogenase kinase 4 both in vitro and in vivo.


Assuntos
Estrogênios , Isoformas de Proteínas
11.
Biochemistry ; 51(40): 7813-5, 2012 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-23009326

RESUMO

Inhibitor-induced conformational ensemble shifts in a multidrug resistant HIV-1 protease variant, MDR769, are characterized by site-directed spin labeling double electron-electron resonance spectroscopy. For MDR769 compared to the native enzyme, changes in inhibitor IC(50) values are related to a parameter defined as |ΔC|, which is the relative change in the inhibitor-induced shift to the closed state. Specifically, a linear correlation is found between |ΔC| and the magnitude of the change in IC(50), provided that inhibitor binding is not too weak. Moreover, inhibitors that exhibit MDR769 resistance no longer induce a strong shift to a closed conformational ensemble as seen previously in the native enzyme.


Assuntos
Fármacos Anti-HIV/farmacologia , Farmacorresistência Viral Múltipla , Variação Genética , Protease de HIV/metabolismo , HIV-1/enzimologia , Substituição de Aminoácidos , Espectroscopia de Ressonância de Spin Eletrônica , Regulação Enzimológica da Expressão Gênica/fisiologia , Regulação Viral da Expressão Gênica/fisiologia , Protease de HIV/genética , Modelos Moleculares , Conformação Proteica , Dobramento de Proteína , Marcadores de Spin
12.
J Ind Microbiol Biotechnol ; 39(10): 1523-32, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22752793

RESUMO

Laccases are multicopper oxidases that couple the oxidation of phenolic polymers to the reduction of molecular oxygen. While an archaeal laccase has only recently been described (LccA from the culture broth of Haloferax volcanii), this enzyme appears promising for biotechnology applications based on its robust bilirubin oxidase and laccase activities as well as its ability to withstand prolonged exposure to extreme conditions. To further optimize LccA productivity and develop an option for LccA purification from whole cells, the encoding gene was modified through deletion of the twin-arginine translocation motif and N-terminal propeptide, and the modified genes were expressed in Escherichia coli. With this approach, LccA was readily purified (overall yield up to 54 %) from the soluble fraction of E. coli as a 74-kDa monomer with syringaldazine oxidizing activity as high as 33 U mg(-1). LccA proteins prepared from H. volcanii culture broth and the soluble fraction of E. coli cells were compared by ICP-AES, EPR, DSC, CD, and UV-Vis spectroscopy and found to have a similar folding pattern with T (m) values and a rich ß-sheet structure analogous to other multicopper oxidases. However, in contrast to the H. volcanii-purified LccA, which was loaded with copper, copper was not fully incorporated into the type-I Cu center of E. coli purified LccA, thus, providing insight into avenues for further optimization.


Assuntos
Proteínas Arqueais/química , Arginina/metabolismo , Escherichia coli/genética , Engenharia Genética , Haloferax volcanii/enzimologia , Lacase/biossíntese , Lacase/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Proteínas Arqueais/biossíntese , Proteínas Arqueais/genética , Proteínas Arqueais/isolamento & purificação , Arginina/genética , Cobre/análise , Escherichia coli/metabolismo , Haloferax volcanii/genética , Lacase/genética , Lacase/isolamento & purificação , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo
13.
SLAS Discov ; 27(1): 8-19, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35058179

RESUMO

The severe acute respiratory syndrome coronavirus 2 responsible for COVID-19 remains a persistent threat to mankind, especially for the immunocompromised and elderly for which the vaccine may have limited effectiveness. Entry of SARS-CoV-2 requires a high affinity interaction of the viral spike protein with the cellular receptor angiotensin-converting enzyme 2. Novel mutations on the spike protein correlate with the high transmissibility of new variants of SARS-CoV-2, highlighting the need for small molecule inhibitors of virus entry into target cells. We report the identification of such inhibitors through a robust high-throughput screen testing 15,000 small molecules from unique libraries. Several leads were validated in a suite of mechanistic assays, including whole cell SARS-CoV-2 infectivity assays. The main lead compound, calpeptin, was further characterized using SARS-CoV-1 and the novel SARS-CoV-2 variant entry assays, SARS-CoV-2 protease assays and molecular docking. This study reveals calpeptin as a potent and specific inhibitor of SARS-CoV-2 and some variants.


Assuntos
Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , Inibidores de Cisteína Proteinase/farmacologia , Dipeptídeos/farmacologia , Ligação Viral/efeitos dos fármacos , Internalização do Vírus/efeitos dos fármacos , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Catepsina L/antagonistas & inibidores , Linhagem Celular , Chlorocebus aethiops , Avaliação Pré-Clínica de Medicamentos , Reposicionamento de Medicamentos , Células HEK293 , Humanos , Simulação de Acoplamento Molecular , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/crescimento & desenvolvimento , Serina Endopeptidases/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Células Vero
14.
J Med Chem ; 63(24): 15639-15654, 2020 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-33289551

RESUMO

Nurr1/NR4A2 is an orphan nuclear receptor transcription factor implicated as a drug target for neurological disorders including Alzheimer's and Parkinson's diseases. Previous studies identified small-molecule NR4A nuclear receptor modulators, but it remains unclear if these ligands affect transcription via direct binding to Nurr1. We assessed 12 ligands reported to affect NR4A activity for Nurr1-dependent and Nurr1-independent transcriptional effects and the ability to bind the Nurr1 ligand-binding domain (LBD). Protein NMR structural footprinting data show that amodiaquine, chloroquine, and cytosporone B bind the Nurr1 LBD; ligands that do not bind include C-DIM12, celastrol, camptothecin, IP7e, isoalantolactone, ethyl 2-[2,3,4-trimethoxy-6-(1-octanoyl)phenyl]acetate (TMPA), and three high-throughput screening hit derivatives. Importantly, ligands that modulate Nurr1 transcription also show Nurr1-independent effects on transcription in a cell type-specific manner, indicating that care should be taken when interpreting the functional response of these ligands in transcriptional assays. These findings should help focus medicinal chemistry efforts that desire to optimize Nurr1-binding ligands.


Assuntos
Ligantes , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Amodiaquina/química , Amodiaquina/metabolismo , Amodiaquina/farmacologia , Animais , Linhagem Celular , Cloroquina/química , Cloroquina/metabolismo , Cloroquina/farmacologia , Humanos , Ressonância Magnética Nuclear Biomolecular , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/química , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Fenilacetatos/química , Fenilacetatos/metabolismo , Fenilacetatos/farmacologia , Ligação Proteica , Ratos , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Transcrição Gênica/efeitos dos fármacos
15.
Cell Chem Biol ; 27(10): 1272-1284.e4, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32763139

RESUMO

TLX is an orphan nuclear receptor that plays a critical role in both embryonic and adult neurogenesis, as well in the pathogenesis of glioblastomas. TLX functions predominately as a transcriptional repressor, but no natural ligands or high-affinity synthetic ligands have been identified. Here, we describe the identification of natural and synthetic retinoids as functional ligands for TLX. We identified potent synthetic retinoids that directly bind to TLX and either activate or inhibit its transcriptional repressor activity. Furthermore, we identified all-trans and 11-cis retinaldehyde (retinal), retinoids that play an essential role in the visual cycle, as the preferential natural retinoids that bind to and modulate the function of TLX. Molecular dynamics simulations followed by mutational analysis provided insight into the molecular basis of retinoid binding to TLX. Our data support the validity of TLX as a target for development of therapeutics to treat cognitive disorders and/or glioblastomas.


Assuntos
Produtos Biológicos/química , Receptores Citoplasmáticos e Nucleares/química , Retinoides/química , Sítios de Ligação/efeitos dos fármacos , Produtos Biológicos/síntese química , Produtos Biológicos/farmacologia , Células Cultivadas , Relação Dose-Resposta a Droga , Humanos , Ligantes , Masculino , Simulação de Dinâmica Molecular , Estrutura Molecular , Receptores Nucleares Órfãos , Receptores Citoplasmáticos e Nucleares/agonistas , Retinoides/síntese química , Retinoides/farmacologia , Adulto Jovem
16.
Structure ; 27(1): 66-77.e5, 2019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30416039

RESUMO

Nuclear receptor-related 1 protein (Nurr1/NR4A2) is an orphan nuclear receptor (NR) that is considered to function without a canonical ligand-binding pocket (LBP). A crystal structure of the Nurr1 ligand-binding domain (LBD) revealed no physical space in the conserved region where other NRs with solvent accessible apo-protein LBPs bind synthetic and natural ligands. Using solution nuclear magnetic resonance spectroscopy, hydrogen/deuterium exchange mass spectrometry, and molecular dynamics simulations, we show that the putative canonical Nurr1 LBP is dynamic with high solvent accessibility, exchanges between two or more conformations on the microsecond-to-millisecond timescale, and can expand from the collapsed crystallized conformation to allow binding of unsaturated fatty acids. These findings should stimulate future studies to probe the ligandability and druggability of Nurr1 for both endogenous and synthetic ligands, which could lead to new therapeutics for Nurr1-related diseases, including Parkinson's disease and schizophrenia.


Assuntos
Simulação de Acoplamento Molecular , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/química , Sítios de Ligação , Ácidos Graxos Insaturados/química , Humanos , Ligantes , Simulação de Dinâmica Molecular , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Ligação Proteica
17.
mBio ; 10(1)2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30723126

RESUMO

The intrinsically disordered HIV-1 Tat protein binds the viral RNA transactivation response structure (TAR), which recruits transcriptional cofactors, amplifying viral mRNA expression. Limited Tat transactivation correlates with HIV-1 latency. Unfortunately, Tat inhibitors are not clinically available. The small molecule didehydro-cortistatin A (dCA) inhibits Tat, locking HIV-1 in persistent latency, blocking viral rebound. We generated chemical derivatives of dCA that rationalized molecular docking of dCA to an active and specific Tat conformer. These revealed the importance of the cycloheptene ring and the isoquinoline nitrogen's positioning in the interaction with specific residues of Tat's basic domain. These features are distinct from the ones required for inhibition of cyclin-dependent kinase 8 (CDK8), the only other known ligand of dCA. Besides, we demonstrated that dCA activity on HIV-1 transcription is independent of CDK8. The binding of dCA to Tat with nanomolar affinity alters the local protein environment, rendering Tat more resistant to proteolytic digestion. dCA thus locks a transient conformer of Tat, specifically blocking functions dependent of its basic domain, namely the Tat-TAR interaction; while proteins with similar basic patches are unaffected by dCA. Our results improve our knowledge of the mode of action of dCA and support structure-based design strategies targeting Tat, to help advance development of dCA, as well as novel Tat inhibitors.IMPORTANCE Tat activates virus production, and limited Tat transactivation correlates with HIV-1 latency. The Tat inhibitor dCA locks HIV in persistent latency. This drug class enables block-and-lock functional cure approaches, aimed at reducing residual viremia during therapy and limiting viral rebound. dCA may also have additional therapeutic benefits since Tat is also neurotoxic. Unfortunately, Tat inhibitors are not clinically available. We generated chemical derivatives and rationalized binding to an active and specific Tat conformer. dCA features required for Tat inhibition are distinct from features needed for inhibition of cyclin-dependent kinase 8 (CDK8), the only other known target of dCA. Furthermore, knockdown of CDK8 did not impact dCA's activity on HIV-1 transcription. Binding of dCA to Tat's basic domain altered the local protein environment and rendered Tat more resistant to proteolytic digestion. dCA locks a transient conformer of Tat, blocking functions dependent on its basic domain, namely its ability to amplify viral transcription. Our results define dCA's mode of action, support structure-based-design strategies targeting Tat, and provide valuable information for drug development around the dCA pharmacophore.


Assuntos
Fármacos Anti-HIV/metabolismo , HIV-1/efeitos dos fármacos , Compostos Heterocíclicos de 4 ou mais Anéis/metabolismo , Isoquinolinas/metabolismo , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo , Fármacos Anti-HIV/síntese química , Quinase 8 Dependente de Ciclina/metabolismo , Células HeLa , Compostos Heterocíclicos de 4 ou mais Anéis/síntese química , Humanos , Isoquinolinas/síntese química , Simulação de Acoplamento Molecular , Ligação Proteica
18.
ACS Pharmacol Transl Sci ; 1(2): 134-137, 2018 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-32219209

RESUMO

Over the past decade, advances in biophysical chemistry, genomic analysis, and structural biology have resulted in the exponential growth of knowledge and critical insight into the function and regulation of orphan nuclear receptors. This article summarizes the current progress in illuminating the structure, function, and regulation of orphan nuclear receptors and their involvement in the physiology, development and molecular mechanism of different pathological conditions. Moreover, current strategies for discovering endogenous ligands, downstream NR-regulated target genes, and new drugs for future therapeutics will be discussed.

19.
Nat Commun ; 9(1): 1794, 2018 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-29728618

RESUMO

The nuclear receptor ligand-binding domain (LBD) is a highly dynamic entity. Crystal structures have defined multiple low-energy LBD structural conformations of the activation function-2 (AF-2) co-regulator-binding surface, yet it remains unclear how ligand binding influences the number and population of conformations within the AF-2 structural ensemble. Here, we present a nuclear receptor co-regulator-binding surface structural ensemble in solution, viewed through the lens of fluorine-19 (19F) nuclear magnetic resonance (NMR) and molecular simulations, and the response of this ensemble to ligands, co-regulator peptides and heterodimerization. We correlate the composition of this ensemble with function in peroxisome proliferator-activated receptor-γ (PPARγ) utilizing ligands of diverse efficacy in co-regulator recruitment. While the co-regulator surface of apo PPARγ and partial-agonist-bound PPARγ is characterized by multiple thermodynamically accessible conformations, the full and inverse-agonist-bound PPARγ co-regulator surface is restricted to a few conformations which favor coactivator or corepressor binding, respectively.


Assuntos
Simulação de Dinâmica Molecular , PPAR gama/química , Peptídeos/química , Conformação Proteica , Sequência de Aminoácidos , Sítios de Ligação , Humanos , Ligantes , Espectroscopia de Ressonância Magnética , PPAR gama/agonistas , PPAR gama/metabolismo , Peptídeos/metabolismo , Ligação Proteica , Multimerização Proteica , Termodinâmica
20.
Structure ; 25(10): 1506-1518.e4, 2017 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-28890360

RESUMO

Nuclear receptor (NR) transcription factors bind various coreceptors, small-molecule ligands, DNA response element sequences, and transcriptional coregulator proteins to affect gene transcription. Small-molecule ligands and DNA are known to influence receptor structure, coregulator protein interaction, and function; however, little is known on the mechanism of synergy between ligand and DNA. Using quantitative biochemical, biophysical, and solution structural methods, including 13C-detected nuclear magnetic resonance and hydrogen/deuterium exchange (HDX) mass spectrometry, we show that ligand and DNA cooperatively recruit the intrinsically disordered steroid receptor coactivator-2 (SRC-2/TIF2/GRIP1/NCoA-2) receptor interaction domain to peroxisome proliferator-activated receptor gamma-retinoid X receptor alpha (PPARγ-RXRα) heterodimer and reveal the binding determinants of the complex. Our data reveal a thermodynamic mechanism by which DNA binding propagates a conformational change in PPARγ-RXRα, stabilizes the receptor ligand binding domain dimer interface, and impacts ligand potency and cooperativity in NR coactivator recruitment.


Assuntos
DNA/metabolismo , Complexos Multiproteicos/química , Coativador 2 de Receptor Nuclear/química , Coativador 2 de Receptor Nuclear/metabolismo , Sítios de Ligação , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Medição da Troca de Deutério , Regulação da Expressão Gênica , Humanos , Ligantes , PPAR gama/química , PPAR gama/metabolismo , Ligação Proteica , Receptor X Retinoide alfa/química , Receptor X Retinoide alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA