Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Plant Biotechnol J ; 20(2): 335-349, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34582620

RESUMO

Necrotrophic fungus Rhizoctonia solani Kühn (R. solani) causes serious diseases in many crops worldwide, including rice and maize sheath blight (ShB). Crop resistance to the fungus is a quantitative trait and resistance mechanism remains largely unknown, severely hindering the progress on developing resistant varieties. In this study, we found that resistant variety YSBR1 has apparently stronger ability to suppress the expansion of R. solani than susceptible Lemont in both field and growth chamber conditions. Comparison of transcriptomic profiles shows that the photosynthetic system including chlorophyll biosynthesis is highly suppressed by R. solani in Lemont but weakly in YSBR1. YSBR1 shows higher chlorophyll content than that of Lemont, and inducing chlorophyll degradation by dark treatment significantly reduces its resistance. Furthermore, three rice mutants and one maize mutant that carry impaired chlorophyll biosynthesis all display enhanced susceptibility to R. solani. Overexpression of OsNYC3, a chlorophyll degradation gene apparently induced expression by R. solani infection, significantly enhanced ShB susceptibility in a high-yield ShB-susceptible variety '9522'. However, silencing its transcription apparently improves ShB resistance without compromising agronomic traits or yield in field tests. Interestingly, altering chlorophyll content does not affect rice resistance to blight and blast diseases, caused by biotrophic and hemi-biotrophic pathogens, respectively. Our study reveals that chlorophyll plays an important role in ShB resistance and suppressing chlorophyll degradation induced by R. solani infection apparently improves rice ShB resistance. This discovery provides a novel target for developing resistant crop to necrotrophic fungus R. solani.


Assuntos
Oryza , Clorofila , Oryza/genética , Oryza/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Rhizoctonia
2.
J Biol Chem ; 294(47): 17931-17940, 2019 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-31530638

RESUMO

Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activase (Rca) is a AAA+ enzyme that uses ATP to remove inhibitors from the active site of Rubisco, the central carboxylation enzyme of photosynthesis. Rca α and ß isoforms exist in most higher plant species, with the α isoform being identical to the ß form but having an additional 25-45 amino acids at the Rca C terminus, known as the C-terminal extension (CTE). Rca is inhibited by ADP, and the extent of ADP sensitivity of the Rca complex can be modulated by the CTE of the α isoform, particularly in relation to a disulfide bond structure that is specifically reduced by the redox-regulatory enzyme thioredoxin-f. Here, we introduced single point mutations of Lys-428 in the CTE of Rca-α from wheat (Triticum aestivum) (TaRca2-α). Substitution of Lys-428 with Arg dramatically altered ADP inhibition, independently of thioredoxin-f regulation. We determined that the reduction in ADP inhibition in the K428R variant is not due to a change in ADP affinity, as the apparent constant for ADP binding was not altered by the K428R substitution. Rather, we observed that the K428R substitution strongly increased ATP substrate affinity and ATP-dependent catalytic velocity. These results suggest that the Lys-428 residue is involved in interacting with the γ-phosphate of ATP. Considering that nucleotide-dependent Rca activity regulates Rubisco and thus photosynthesis during fluctuating irradiance, the K428R substitution could potentially provide a mechanism for boosting the performance of wheat grown in the dynamic light environments of the field.


Assuntos
Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Mutação Puntual/genética , Triticum/enzimologia , Sequência de Aminoácidos , Estabilidade Enzimática , Cinética , Especificidade por Substrato
3.
New Phytol ; 217(1): 305-319, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28905991

RESUMO

Plant defense to microbial pathogens is often accompanied by significant growth inhibition. How plants merge immune system function with normal growth and development is still poorly understood. Here, we investigated the role of target of rapamycin (TOR), an evolutionary conserved serine/threonine kinase, in the plant defense response. We used rice as a model system and applied a combination of chemical, genetic, genomic and cell-based analyses. We demonstrate that ectopic expression of TOR and Raptor (regulatory-associated protein of mTOR), a protein previously demonstrated to interact with TOR in Arabidopsis, positively regulates growth and development in rice. Transcriptome analysis of rice cells treated with the TOR-specific inhibitor rapamycin revealed that TOR not only dictates transcriptional reprogramming of extensive gene sets involved in central and secondary metabolism, cell cycle and transcription, but also suppresses many defense-related genes. TOR overexpression lines displayed increased susceptibility to both bacterial and fungal pathogens, whereas plants with reduced TOR signaling displayed enhanced resistance. Finally, we found that TOR antagonizes the action of the classic defense hormones salicylic acid and jasmonic acid. Together, these results indicate that TOR acts as a molecular switch for the activation of cell proliferation and plant growth at the expense of cellular immunity.


Assuntos
Oryza/fisiologia , Reguladores de Crescimento de Plantas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sirolimo/farmacologia , Proliferação de Células/efeitos dos fármacos , Ciclopentanos/metabolismo , Oryza/efeitos dos fármacos , Oryza/genética , Oryza/crescimento & desenvolvimento , Oxilipinas/metabolismo , Ácido Salicílico/metabolismo
4.
Mol Plant Microbe Interact ; 30(3): 255-266, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28151048

RESUMO

Magnaporthe oryzae (rice blast) and the root-knot nematode Meloidogyne graminicola are causing two of the most important pathogenic diseases jeopardizing rice production. Here, we show that root-knot nematode infestation on rice roots leads to important above-ground changes in plant immunity gene expression, which is correlated with significantly enhanced susceptibility to blast disease. A detailed metabolic analysis of oxidative stress responses and hormonal balances demonstrates that the above-ground tissues have a disturbed oxidative stress level, with accumulation of H2O2, as well as hormonal disturbances. Moreover, double infection experiments on an oxidative stress mutant and an auxin-deficient rice line indicate that the accumulation of auxin in the above-ground tissue is at least partly responsible for the blast-promoting effect of root-knot nematode infection.


Assuntos
Oryza/parasitologia , Doenças das Plantas/parasitologia , Raízes de Plantas/parasitologia , Tylenchoidea/fisiologia , Animais , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Magnaporthe/fisiologia , Oryza/genética , Oryza/microbiologia , Estresse Oxidativo , Doenças das Plantas/genética , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/genética , Brotos de Planta/fisiologia , Transcriptoma/genética
5.
Plant Physiol ; 170(3): 1831-47, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26829979

RESUMO

Gibberellins are a class of tetracyclic plant hormones that are well known to promote plant growth by inducing the degradation of a class of nuclear growth-repressing proteins, called DELLAs. In recent years, GA and DELLAs are also increasingly implicated in plant responses to pathogen attack, although our understanding of the underlying mechanisms is still limited, especially in monocotyledonous crop plants. Aiming to further decipher the molecular underpinnings of GA- and DELLA-modulated plant immunity, we studied the dynamics and impact of GA and DELLA during infection of the model crop rice (Oryza sativa) with four different pathogens exhibiting distinct lifestyles and infection strategies. Opposite to previous findings in Arabidopsis (Arabidopsis thaliana), our findings reveal a prominent role of the DELLA protein Slender Rice1 (SLR1) in the resistance toward (hemi)biotrophic but not necrotrophic rice pathogens. Moreover, contrary to the differential effect of DELLA on the archetypal defense hormones salicylic acid (SA) and jasmonic acid (JA) in Arabidopsis, we demonstrate that the resistance-promoting effect of SLR1 is due at least in part to its ability to boost both SA- and JA-mediated rice defenses. In a reciprocal manner, we found JA and SA treatment to interfere with GA metabolism and stabilize SLR1. Together, these findings favor a model whereby SLR1 acts as a positive regulator of hemibiotroph resistance in rice by integrating and amplifying SA- and JA-dependent defense signaling. Our results highlight the differences in hormone defense networking between rice and Arabidopsis and underscore the importance of GA and DELLA in molding disease outcomes.


Assuntos
Ciclopentanos/metabolismo , Oryza/metabolismo , Oxilipinas/metabolismo , Proteínas de Plantas/metabolismo , Ácido Salicílico/metabolismo , Transdução de Sinais , Ascomicetos/fisiologia , Western Blotting , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Interações Hospedeiro-Patógeno , Magnaporthe/fisiologia , Mutação , Oryza/genética , Oryza/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Imunidade Vegetal/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Rhizoctonia/fisiologia , Especificidade da Espécie , Xanthomonas/fisiologia
6.
Plant Physiol ; 167(4): 1671-84, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25713338

RESUMO

Priming refers to a mechanism whereby plants are sensitized to respond faster and/or more strongly to future pathogen attack. Here, we demonstrate that preexposure to the green leaf volatile Z-3-hexenyl acetate (Z-3-HAC) primed wheat (Triticum aestivum) for enhanced defense against subsequent infection with the hemibiotrophic fungus Fusarium graminearum. Bioassays showed that, after priming with Z-3-HAC, wheat ears accumulated up to 40% fewer necrotic spikelets. Furthermore, leaves of seedlings showed significantly smaller necrotic lesions compared with nonprimed plants, coinciding with strongly reduced fungal growth in planta. Additionally, we found that F. graminearum produced more deoxynivalenol, a mycotoxin, in the primed treatment. Expression analysis of salicylic acid (SA) and jasmonic acid (JA) biosynthesis genes and exogenous methyl salicylate and methyl jasmonate applications showed that plant defense against F. graminearum is sequentially regulated by SA and JA during the early and later stages of infection, respectively. Interestingly, analysis of the effect of Z-3-HAC pretreatment on SA- and JA-responsive gene expression in hormone-treated and pathogen-inoculated seedlings revealed that Z-3-HAC boosts JA-dependent defenses during the necrotrophic infection stage of F. graminearum but suppresses SA-regulated defense during its biotrophic phase. Together, these findings highlight the importance of temporally separated hormone changes in molding plant health and disease and support a scenario whereby the green leaf volatile Z-3-HAC protects wheat against Fusarium head blight by priming for enhanced JA-dependent defenses during the necrotrophic stages of infection.


Assuntos
Acetatos/farmacologia , Fusarium/metabolismo , Doenças das Plantas/imunologia , Imunidade Vegetal/efeitos dos fármacos , Tricotecenos/metabolismo , Triticum/efeitos dos fármacos , Acetatos/metabolismo , Ciclopentanos/metabolismo , Fusarium/patogenicidade , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Oxilipinas/metabolismo , Doenças das Plantas/microbiologia , Reguladores de Crescimento de Plantas/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Folhas de Planta/imunologia , Proteínas de Plantas/genética , Ácido Salicílico/metabolismo , Plântula/efeitos dos fármacos , Plântula/genética , Plântula/imunologia , Tricotecenos/análise , Triticum/genética , Triticum/imunologia
7.
BMC Plant Biol ; 15: 10, 2015 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-25605284

RESUMO

BACKGROUND: Small-molecule hormones are well known to play key roles in the plant immune signaling network that is activated upon pathogen perception. In contrast, little is known about whether phytohormones also directly influence microbial virulence, similar to what has been reported in animal systems. RESULTS: In this paper, we tested the hypothesis that hormones fulfill dual roles in plant-microbe interactions by orchestrating host immune responses, on the one hand, and modulating microbial virulence traits, on the other. Employing the rice-Xanthomonas oryzae pv. oryzae (Xoo) interaction as a model system, we show that Xoo uses the classic immune hormone salicylic acid (SA) as a trigger to activate its virulence-associated quorum sensing (QS) machinery. Despite repressing swimming motility, sodium salicylate (NaSA) induced production of the Diffusible Signal Factor (DSF) and Diffusible Factor (DF) QS signals, with resultant accumulation of xanthomonadin and extracellular polysaccharides. In contrast, abscisic acid (ABA), which favors infection by Xoo, had little impact on DF- and DSF-mediated QS, but promoted bacterial swimming via the LuxR solo protein OryR. Moreover, we found both DF and DSF to influence SA- and ABA-responsive gene expression in planta. CONCLUSIONS: Together our findings indicate that the rice SA and ABA signaling pathways cross-communicate with the Xoo DF and DSF QS systems and underscore the importance of bidirectional interkingdom signaling in molding plant-microbe interactions.


Assuntos
Interações Hospedeiro-Patógeno/efeitos dos fármacos , Oryza/microbiologia , Reguladores de Crescimento de Plantas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Xanthomonas/fisiologia , Proteínas de Bactérias/metabolismo , Biopolímeros/biossíntese , Hidroxibenzoatos/metabolismo , Modelos Biológicos , Oryza/efeitos dos fármacos , Oryza/metabolismo , Parabenos/metabolismo , Percepção de Quorum/efeitos dos fármacos , Ácido Salicílico/farmacologia , Xanthomonas/efeitos dos fármacos
8.
New Phytol ; 206(2): 761-73, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25625327

RESUMO

Although numerous studies have shown the ability of silicon (Si) to mitigate a wide variety of abiotic and biotic stresses, relatively little is known about the underlying mechanism(s). Here, we have investigated the role of hormone defense pathways in Si-induced resistance to the rice brown spot fungus Cochliobolus miyabeanus. To delineate the involvement of multiple hormone pathways, a multidisciplinary approach was pursued, combining exogenous hormone applications, pharmacological inhibitor experiments, time-resolved hormone measurements, and bioassays with hormone-deficient and/or -insensitive mutant lines. Contrary to other types of induced resistance, we found Si-induced brown spot resistance to function independently of the classic immune hormones salicylic acid and jasmonic acid. Our data also rule out a major role of the abscisic acid (ABA) and cytokinin pathways, but suggest that Si mounts resistance to C. miyabeanus by preventing the fungus from hijacking the rice ethylene (ET) machinery. Interestingly, rather than suppressing rice ET signaling per se, Si probably interferes with the production and/or action of fungal ET. Together our findings favor a scenario whereby Si induces brown spot resistance by disarming fungal ET and argue that impairment of pathogen virulence factors is a core resistance mechanism underpinning Si-induced plant immunity.


Assuntos
Ascomicetos/fisiologia , Etilenos/metabolismo , Oryza/efeitos dos fármacos , Doenças das Plantas/imunologia , Reguladores de Crescimento de Plantas/metabolismo , Silício/farmacologia , Resistência à Doença , Interações Hospedeiro-Patógeno , Oryza/imunologia , Oryza/microbiologia , Doenças das Plantas/microbiologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/imunologia , Folhas de Planta/microbiologia , Transdução de Sinais
9.
New Phytol ; 199(2): 490-504, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23627463

RESUMO

Deficiency of abscisic acid (ABA) in the sitiens mutant of tomato (Solanum lycopersicum) culminates in increased resistance to Botrytis cinerea through a rapid epidermal hypersensitive response (HR) and associated phenylpropanoid pathway-derived cell wall fortifications. This study focused on understanding the role of primary carbon : nitrogen (C : N) metabolism in the resistance response of sitiens to B. cinerea. How alterations in C : N metabolism are linked with the HR-mediated epidermal arrest of the pathogen has been also investigated. Temporal alterations in the γ-aminobutyric acid (GABA) shunt, glutamine synthetase/glutamate synthase (GS/GOGAT) cycle and phenylpropanoid pathway were transcriptionally, enzymatically and metabolically monitored in both wild-type and sitiens plants. Virus-induced gene silencing, microscopic analyses and pharmacological assays were used to further confirm the data. Our results on the sitiens-B. cinerea interaction favor a model in which cell viability in the cells surrounding the invaded tissue is maintained by a constant replenishment of the tricarboxylic acid (TCA) cycle through overactivation of the GS/GOGAT cycle and the GABA shunt, resulting in resistance through both tightly controlling the defense-associated HR and slowing down the pathogen-induced senescence. Collectively, this study shows that maintaining cell viability via alterations in host C : N metabolism plays a vital role in the resistance response against necrotrophic pathogens.


Assuntos
Ácido Abscísico/metabolismo , Botrytis/fisiologia , Citosol/enzimologia , Glutamato-Amônia Ligase/metabolismo , Mutação/genética , Solanum lycopersicum/enzimologia , Ácido gama-Aminobutírico/metabolismo , Ácido Abscísico/farmacologia , Citosol/efeitos dos fármacos , Resistência à Doença/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Solanum lycopersicum/citologia , Solanum lycopersicum/imunologia , Solanum lycopersicum/microbiologia , Redes e Vias Metabólicas/efeitos dos fármacos , Modelos Biológicos , Fenilalanina Amônia-Liase/metabolismo , Propanóis/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ácido gama-Aminobutírico/farmacologia
10.
Plant Physiol ; 158(4): 1833-46, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22353574

RESUMO

Brassinosteroids (BRs) are a unique class of plant steroid hormones that orchestrate myriad growth and developmental processes. Although BRs have long been known to protect plants from a suite of biotic and abiotic stresses, our understanding of the underlying molecular mechanisms is still rudimentary. Aiming to further decipher the molecular logic of BR-modulated immunity, we have examined the dynamics and impact of BRs during infection of rice (Oryza sativa) with the root oomycete Pythium graminicola. Challenging the prevailing view that BRs positively regulate plant innate immunity, we show that P. graminicola exploits BRs as virulence factors and hijacks the rice BR machinery to inflict disease. Moreover, we demonstrate that this immune-suppressive effect of BRs is due, at least in part, to negative cross talk with salicylic acid (SA) and gibberellic acid (GA) pathways. BR-mediated suppression of SA defenses occurred downstream of SA biosynthesis, but upstream of the master defense regulators NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 and OsWRKY45. In contrast, BR alleviated GA-directed immune responses by interfering at multiple levels with GA metabolism, resulting in indirect stabilization of the DELLA protein and central GA repressor SLENDER RICE1 (SLR1). Collectively, these data favor a model whereby P. graminicola coopts the plant BR pathway as a decoy to antagonize effectual SA- and GA-mediated defenses. Our results highlight the importance of BRs in modulating plant immunity and uncover pathogen-mediated manipulation of plant steroid homeostasis as a core virulence strategy.


Assuntos
Brassinosteroides/metabolismo , Giberelinas/metabolismo , Oryza/imunologia , Oryza/microbiologia , Imunidade Vegetal/imunologia , Raízes de Plantas/imunologia , Ácido Salicílico/metabolismo , Sequência de Bases , Brassinosteroides/biossíntese , Brassinosteroides/farmacologia , Resistência à Doença/efeitos dos fármacos , Resistência à Doença/imunologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Modelos Biológicos , Dados de Sequência Molecular , Oryza/efeitos dos fármacos , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Imunidade Vegetal/efeitos dos fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/microbiologia , Pythium , Ácido Salicílico/farmacologia , Transdução de Sinais/efeitos dos fármacos , Esteroides Heterocíclicos/farmacologia , Fatores de Tempo , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
11.
J Exp Bot ; 64(5): 1281-93, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23255278

RESUMO

Plants are constantly threatened by a wide array of microbial pathogens. Pathogen invasion can lead to vast yield losses and the demand for sustainable plant-protection strategies has never been greater. Chemical plant activators and selected strains of rhizobacteria can increase resistance against specific types of pathogens but these treatments are often ineffective or even cause susceptibility against others. Silicon application is one of the scarce examples of a treatment that effectively induces broad-spectrum disease resistance. The prophylactic effect of silicon is considered to be the result of both passive and active defences. Although the phenomenon has been known for decades, very little is known about the molecular basis of silicon-afforded disease control. By combining knowledge on how silicon interacts with cell metabolism in diatoms and plants, this review describes silicon-induced regulatory mechanisms that might account for broad-spectrum plant disease resistance. Priming of plant immune responses, alterations in phytohormone homeostasis, regulation of iron homeostasis, silicon-driven photorespiration and interaction with defence signalling components all are potential mechanisms involved in regulating silicon-triggered resistance responses. Further elucidating how silicon exerts its beneficial properties may create new avenues for developing plants that are better able to withstand multiple attackers.


Assuntos
Resistência à Doença/efeitos dos fármacos , Doenças das Plantas/imunologia , Doenças das Plantas/prevenção & controle , Plantas/imunologia , Silício/farmacologia , Oryza/efeitos dos fármacos , Oryza/crescimento & desenvolvimento , Oryza/imunologia , Plantas/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos
12.
Genome Biol ; 24(1): 6, 2023 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-36639800

RESUMO

BACKGROUND: Testing an ever-increasing number of CRISPR components is challenging when developing new genome engineering tools. Plant biotechnology has few high-throughput options to perform iterative design-build-test-learn cycles of gene-editing reagents. To bridge this gap, we develop ITER (Iterative Testing of Editing Reagents) based on 96-well arrayed protoplast transfections and high-content imaging. RESULTS: We validate ITER in wheat and maize protoplasts using Cas9 cytosine and adenine base editors (ABEs), allowing one optimization cycle - from design to results - within 3 weeks. Given that previous LbCas12a-ABEs have low or no activity in plants, we use ITER to develop an optimized LbCas12a-ABE. We show that sequential improvement of five components - NLS, crRNA, LbCas12a, adenine deaminase, and linker - leads to a remarkable increase in activity from almost undetectable levels to 40% on an extrachromosomal GFP reporter. We confirm the activity of LbCas12a-ABE at endogenous targets in protoplasts and obtain base-edited plants in up to 55% of stable wheat transformants and the edits are transmitted to T1 progeny. We leverage these improvements to develop a highly mutagenic LbCas12a nuclease and a LbCas12a-CBE demonstrating that the optimizations can be broadly applied to the Cas12a toolbox. CONCLUSION: Our data show that ITER is a sensitive, versatile, and high-throughput platform that can be harnessed to accelerate the development of genome editing technologies in plants. We use ITER to create an efficient Cas12a-ABE by iteratively testing a large panel of vector components. ITER will likely be useful to create and optimize genome editing reagents in a wide range of plant species.


Assuntos
Sistemas CRISPR-Cas , Zea mays , Zea mays/genética , Triticum/genética , Edição de Genes/métodos , Mutagênese
13.
Plant Physiol ; 157(1): 305-16, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21715672

RESUMO

Complex defense signaling pathways, controlled by different hormones, are involved in the reaction of plants to a wide range of biotic and abiotic stress factors. We studied the ability of salicylic acid, jasmonate (JA), and ethylene (ET) to induce systemic defense in rice (Oryza sativa) against the root knot nematode Meloidogyne graminicola. Exogenous ET (ethephon) and JA (methyl jasmonate) supply on the shoots induced a strong systemic defense response in the roots, exemplified by a major up-regulation of pathogenesis-related genes OsPR1a and OsPR1b, while the salicylic acid analog BTH (benzo-1,2,3-thiadiazole-7-carbothioic acid S-methyl ester) was a less potent systemic defense inducer from shoot to root. Experiments with JA biosynthesis mutants and ET-insensitive transgenics showed that ET-induced defense requires an intact JA pathway, while JA-induced defense was still functional when ET signaling was impaired. Pharmacological inhibition of JA and ET biosynthesis confirmed that JA biosynthesis is needed for ET-induced systemic defense, and quantitative real-time reverse transcription-polymerase chain reaction data revealed that ET application onto the shoots strongly activates JA biosynthesis and signaling genes in the roots. All data provided in this study point to the JA pathway to play a pivotal role in rice defense against root knot nematodes. The expression of defense-related genes was monitored in root galls caused by M. graminicola. Different analyzed defense genes were attenuated in root galls caused by the nematode at early time points after infection. However, when the exogenous defense inducers ethephon and methyl jasmonate were supplied to the plant, the nematode was less effective in counteracting root defense pathways, hence making the plant more resistant to nematode infection.


Assuntos
Ciclopentanos/metabolismo , Nematoides/fisiologia , Oryza/parasitologia , Oxilipinas/metabolismo , Raízes de Plantas/parasitologia , Animais , Compostos Organofosforados/administração & dosagem , Tiadiazóis/administração & dosagem
14.
Plant Physiol ; 152(4): 2036-52, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20130100

RESUMO

The plant hormone abscisic acid (ABA) is involved in an array of plant processes, including the regulation of gene expression during adaptive responses to various environmental cues. Apart from its well-established role in abiotic stress adaptation, emerging evidence indicates that ABA is also prominently involved in the regulation and integration of pathogen defense responses. Here, we demonstrate that exogenously administered ABA enhances basal resistance of rice (Oryza sativa) against the brown spot-causing ascomycete Cochliobolus miyabeanus. Microscopic analysis of early infection events in control and ABA-treated plants revealed that this ABA-inducible resistance (ABA-IR) is based on restriction of fungal progression in the mesophyll. We also show that ABA-IR does not rely on boosted expression of salicylic acid-, jasmonic acid -, or callose-dependent resistance mechanisms but, instead, requires a functional Galpha-protein. In addition, several lines of evidence are presented suggesting that ABA steers its positive effect on brown spot resistance through antagonistic cross talk with the ethylene (ET) response pathway. Exogenous ethephon application enhances susceptibility, whereas genetic disruption of ET signaling renders plants less vulnerable to C. miyabeanus attack, thereby inducing a level of resistance similar to that observed on ABA-treated wild-type plants. Moreover, ABA treatment alleviates C. miyabeanus-induced activation of the ET reporter gene EBP89, while derepression of pathogen-triggered EBP89 transcription via RNA interference-mediated knockdown of OsMPK5, an ABA-primed mitogen-activated protein kinase gene, compromises ABA-IR. Collectively, these data favor a model whereby exogenous ABA enhances resistance against C. miyabeanus at least in part by suppressing pathogen-induced ET action in an OsMPK5-dependent manner.


Assuntos
Ácido Abscísico/metabolismo , Ascomicetos/patogenicidade , Etilenos/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Oryza/metabolismo , Transdução de Sinais , Peróxido de Hidrogênio/metabolismo , Oryza/microbiologia
15.
Plant Cell Rep ; 30(5): 913-28, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21279642

RESUMO

Mycosphaerella fijiensis, a hemibiotrophic fungus, is the causal agent of black leaf streak disease, the most serious foliar disease of bananas and plantains. To analyze the compatible interaction of M. fijiensis with Musa spp., a suppression subtractive hybridization (SSH) cDNA library was constructed to identify transcripts induced at late stages of infection in the host and the pathogen. In addition, a full-length cDNA library was created from the same mRNA starting material as the SSH library. The SSH procedure was effective in identifying specific genes predicted to be involved in plant-fungal interactions and new information was obtained mainly about genes and pathways activated in the plant. Several plant genes predicted to be involved in the synthesis of phenylpropanoids and detoxification compounds were identified, as well as pathogenesis-related proteins that could be involved in the plant response against M. fijiensis infection. At late stages of infection, jasmonic acid and ethylene signaling transduction pathways appear to be active, which corresponds with the necrotrophic life style of M. fijiensis. Quantitative PCR experiments revealed that antifungal genes encoding PR proteins and GDSL-like lipase are only transiently induced 30 days post inoculation (dpi), indicating that the fungus is probably actively repressing plant defense. The only fungal gene found was induced 37 dpi and encodes UDP-glucose pyrophosphorylase, an enzyme involved in the biosynthesis of trehalose. Trehalose biosynthesis was probably induced in response to prior activation of plant antifungal genes and may act as an osmoprotectant against membrane damage.


Assuntos
Ascomicetos/genética , Genes de Plantas/genética , Interações Hospedeiro-Patógeno/genética , Musa/genética , Doenças das Plantas/genética , UTP-Glucose-1-Fosfato Uridililtransferase/genética , Ascomicetos/patogenicidade , Ciclopentanos/metabolismo , Etilenos/metabolismo , Etiquetas de Sequências Expressas , Proteínas Fúngicas/genética , Biblioteca Gênica , Musa/microbiologia , Hibridização de Ácido Nucleico , Oxilipinas/metabolismo , Doenças das Plantas/microbiologia , Folhas de Planta/genética , Proteínas de Plantas , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA , Transdução de Sinais , Fatores de Tempo
16.
BMC Plant Biol ; 9: 9, 2009 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-19161601

RESUMO

BACKGROUND: Induced resistance is a state of enhanced defensive capacity developed by a plant reacting to specific biotic or chemical stimuli. Over the years, several forms of induced resistance have been characterized, including systemic acquired resistance, which is induced upon localized infection by an avirulent necrotizing pathogen, and induced systemic resistance (ISR), which is elicited by selected strains of nonpathogenic rhizobacteria. However, contrary to the relative wealth of information on inducible defense responses in dicotyledoneous plants, our understanding of the molecular mechanisms underlying induced resistance phenomena in cereal crops is still in its infancy. Using a combined cytomolecular and pharmacological approach, we analyzed the host defense mechanisms associated with the establishment of ISR in rice by the rhizobacterium Serratia plymuthica IC1270. RESULTS: In a standardized soil-based assay, root treatment with IC1270 rendered foliar tissues more resistant to the hemibiotrophic pathogen Magnaporthe oryzae, causal agent of the devastating rice blast disease. Analysis of the cytological and biochemical alterations associated with restriction of fungal growth in IC1270-induced plants revealed that IC1270 primes rice for enhanced attacker-induced accumulation of reactive oxygen species (ROS) and autofluorescent phenolic compounds in and near epidermal cells displaying dense cytoplasmic granulation. Similar, yet more abundant, phenotypes of hypersensitively dying cells in the vicinity of fungal hyphae were evident in a gene-for-gene interaction with an avirulent M. oryzae strain, suggesting that IC1270-inducible ISR and R protein conditioned effector-triggered immunity (ETI) target similar defense mechanisms. Yet, this IC1270-inducible ISR response seems to act as a double-edged sword within the rice defense network as induced plants displayed an increased vulnerability to the necrotrophic pathogens Rhizoctonia solani and Cochliobolus miyabeanus. Artificial enhancement of ROS levels in inoculated leaves faithfully mimicked the opposite effects of IC1270 bacteria on aforementioned pathogens, suggesting a central role for oxidative events in the IC1270-induced resistance mechanism. CONCLUSION: Besides identifying ROS as modulators of antagonistic defense mechanisms in rice, this work reveals the mechanistic similarities between S. plymuthica-mediated ISR and R protein-dictated ETI and underscores the importance of using appropriate innate defense mechanisms when breeding for broad-spectrum rice disease resistance.


Assuntos
Imunidade Inata , Oryza/microbiologia , Serratia/metabolismo , Magnaporthe/patogenicidade , Oryza/imunologia , Oryza/metabolismo , Oxirredução , Estresse Oxidativo , Doenças das Plantas/microbiologia , Folhas de Planta/imunologia , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Raízes de Plantas/microbiologia , Espécies Reativas de Oxigênio/metabolismo , Rhizoctonia/patogenicidade
17.
Front Plant Sci ; 10: 1515, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31824540

RESUMO

Next to their essential roles in plant growth and development, phytohormones play a central role in plant immunity against pathogens. In this study we studied the previously reported antagonism between the plant-pathogenic oomycete Pythium arrhenomanes and the root-knot nematode Meloidogyne graminicola, two root pathogens that co-occur in aerobic rice fields. In this manuscript, we investigated if the antagonism is related to imbalances in plant hormone levels, which could be involved in activation of plant defense. Hormone measurements and gene expression analyses showed that the jasmonate (JA) pathway is induced early upon P. arrhenomanes infection. Exogenous application of methyl-jasmonate (MeJA) on the plant confirmed that JA is needed for basal defense against both P. arrhenomanes and M. graminicola in rice. Whereas M. graminicola suppresses root JA levels to increase host susceptibility, Pythium inoculation boosts JA in a manner that prohibits JA repression by the nematode in double-inoculated plants. Exogenous MeJA supply phenocopied the defense-inducing capacity of Pythium against the root-knot nematode, whereas the antagonism was weakened in JA-insensitive mutants. Transcriptome analysis confirmed upregulation of JA biosynthesis and signaling genes upon P. arrhenomanes infection, and additionally revealed induction of genes involved in biosynthesis of diterpenoid phytoalexins, consistent with strong activation of the gene encoding the JA-inducible transcriptional regulator DITERPENOID PHYTOALEXIN FACTOR. Altogether, the here-reported data indicate an important role for JA-induced defense mechanisms in this antagonistic interaction. Next to that, our results provide evidence for induced expression of genes encoding ERF83, and related PR proteins, as well as auxin depletion in P. arrhenomanes infected rice roots, which potentially further contribute to the reduced nematode susceptibility seen in double-infected plants.

18.
Mol Plant Microbe Interact ; 21(6): 709-19, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18624635

RESUMO

Plants are obliged to defend themselves against a wide range of biotic and abiotic stresses. Complex regulatory signaling networks mount an appropriate defense response depending on the type of stress that is perceived. In response to abiotic stresses such as drought, cold, and salinity, the function of abscisic acid (ABA) is well documented: elevation of plant ABA levels and activation of ABA-responsive signaling result in regulation of stomatal aperture and expression of stress-responsive genes. In response to pathogens, the role of ABA is more obscure and is a research topic that has long been overlooked. This article aims to evaluate and review the reported modes of ABA action on pathogen defense and highlight recent advances in deciphering the complex role of ABA in plant-pathogen interactions. The proposed mechanisms responsible for positive or negative effects of ABA on pathogen defense are discussed, as well as the regulation of ABA signaling and in planta ABA concentrations by beneficial and pathogenic microorganisms. In addition, the fast-growing number of reports that characterize antagonistic and synergistic interactions between abiotic and biotic stress responses point to ABA as an essential component in integrating and fine-tuning abiotic and biotic stress-response signaling networks.


Assuntos
Ácido Abscísico/metabolismo , Plantas/metabolismo , Ácido Abscísico/fisiologia , Etilenos/metabolismo , Regulação da Expressão Gênica de Plantas , Imunidade Inata/genética , Modelos Biológicos , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Plantas/genética , Plantas/microbiologia , Transdução de Sinais/fisiologia
19.
Sci Rep ; 8(1): 3864, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29497084

RESUMO

Sucrose non-fermenting-1-related protein kinase-1 (SnRK1) belongs to a family of evolutionary conserved kinases with orthologs in all eukaryotes, ranging from yeasts (SnF1) to mammals (AMP-Activated kinase). These kinases sense energy deficits caused by nutrient limitation or stress and coordinate the required adaptations to maintain energy homeostasis and survival. In plants, SnRK1 is a global regulator of plant metabolism and is also involved in abiotic stress responses. Its role in the response to biotic stress, however, is only starting to be uncovered. Here we studied the effect of altered SnRK1a expression on growth and plant defense in rice. OsSnRK1a overexpression interfered with normal growth and development and increased resistance against both (hemi)biotrophic and necrotrophic pathogens, while OsSnRK1a silencing in RNAi lines increased susceptibility. OsSnRK1a overexpression positively affected the salicylic acid pathway and boosted the jasmonate-mediated defense response after inoculation with the blast fungus Pyricularia oryzae. Together these findings strongly suggest OsSnRK1a to be involved in plant basal immunity and favor a model whereby OsSnRK1a acts as a master switch that regulates growth-immunity trade-offs.


Assuntos
Oryza/imunologia , Doenças das Plantas/imunologia , Proteínas de Plantas/imunologia , Proteínas Serina-Treonina Quinases/imunologia , Adaptação Fisiológica/genética , Adaptação Fisiológica/imunologia , Ciclopentanos/metabolismo , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Oryza/genética , Oryza/metabolismo , Oxilipinas/metabolismo , Imunidade Vegetal , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Ácido Salicílico/metabolismo
20.
Mitochondrion ; 33: 58-71, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27476757

RESUMO

Cellular signaling pathways are regulated in a highly dynamic fashion in order to quickly adapt to distinct environmental conditions. Acetylation of lysine residues represents a central process that orchestrates cellular metabolism and signaling. In mitochondria, acetylation seems to be the most prevalent post-translational modification, presumably linked to the compartmentation and high turnover of acetyl-CoA in this organelle. Similarly, the elevated pH and the higher concentration of metabolites in mitochondria seem to favor non-enzymatic lysine modifications, as well as other acylations. Hence, elucidating the mechanisms for metabolic control of protein acetylation is crucial for our understanding of cellular processes. Recent advances in mass spectrometry-based proteomics have considerably increased our knowledge of the regulatory scope of acetylation. Here, we review the current knowledge and functional impact of mitochondrial protein acetylation across species. We first cover the experimental approaches to identify and analyze lysine acetylation on a global scale, we then explore both commonalities and specific differences of plant and animal acetylomes and the evolutionary conservation of protein acetylation, as well as its particular impact on metabolism and diseases. Important future directions and technical challenges are discussed, and it is pointed out that the transfer of knowledge between species and diseases, both in technology and biology, is of particular importance for further advancements in this field.


Assuntos
Acetilcoenzima A/metabolismo , Lisina/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Processamento de Proteína Pós-Traducional , Acetilação , Animais , Biologia Computacional , Espectrometria de Massas , Plantas , Proteômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA