RESUMO
Foot-and-mouth disease (FMD) affects the livestock industry and socioeconomic sustainability of many African countries. The success of FMD control programs in Africa depends largely on understanding the dynamics of FMD virus (FMDV) spread. In light of the recent outbreaks of FMD that affected the North-Western African countries in 2018 and 2019, we investigated the evolutionary phylodynamics of the causative serotype O viral strains all belonging to the East-Africa 3 topotype (O/EA-3). We analyzed a total of 489 sequences encoding the FMDV VP1 genome region generated from samples collected from 25 African and Western Asian countries between 1974 and 2019. Using Bayesian evolutionary models on genomic and epidemiological data, we inferred the routes of introduction and migration of the FMDV O/EA-3 topotype at the inter-regional scale. We inferred a mean substitution rate of 6.64 × 10-3 nt/site/year and we predicted that the most recent common ancestor for our panel of samples circulated between February 1967 and November 1973 in Yemen, likely reflecting the epidemiological situation in under sampled cattle-exporting East African countries. Our study also reinforces the role previously described of Sudan and South Sudan as a frequent source of FMDVs spread. In particular, we identified two transboundary routes of O/EA-3 diffusion: the first from Sudan to North-East Africa, and from the latter into Israel and Palestine AT; a second from Sudan to Nigeria, Cameroon, and from there to further into West and North-West Africa. This study highlights the necessity to reinforce surveillance at an inter-regional scale in Africa and Western Asia, in particular along the identified migration routes for the implementation of efficient control measures in the fight against FMD.
Assuntos
Vírus da Febre Aftosa , Febre Aftosa , Animais , Teorema de Bayes , Bovinos , Surtos de Doenças/veterinária , Febre Aftosa/epidemiologia , Vírus da Febre Aftosa/genética , Nigéria/epidemiologia , Filogenia , SorogrupoRESUMO
In 2018, no lumpy skin disease (LSD) outbreaks were reported in the Balkan region, after the decline reported in 2017 (385) compared to 2016 (7,483). This confirms the effectiveness of the vaccination campaign based on the LSD homologous vaccine strain which continued throughout 2018 with over 2.5 million animals vaccinated, keeping the mean vaccination coverage above 70%. In 2018, LSD outbreaks were reported in Russia, Turkey and Georgia. In Russia, the LSD epidemics expanded northward and eastward, while in Turkey, the most affected region was in the east. LSD is spreading in Turkey since 2013, despite large vaccination campaigns with heterologous vaccine performed since 2014. This might support the hypothesis that the use of heterologous vaccines results in insufficient protection, and therefore, the use of homologous LSD vaccine in Turkey should be considered to prevent further spread. As the LSD epidemic in Turkey is a risk for reintroduction into the EU, it is recommended to continue the vaccination campaigns in 2019 in the high-risk areas of Balkan region. Spread rates of LSD within a village were estimated from outbreak data for Albania, which can be used to inform the level of vaccination required to control an outbreak in a village. In terms of vaccine safety, the reports from the field suggest that, compared to the large number of animals vaccinated in the Balkan region since 2015, a very limited number of side effects have been recorded so far, although from published literature, local or even systemic side effects in some animals may occur after vaccination. However, due to inadequate study design in the reviewed studies, there is no consensus on the magnitude of such effects and on their real consequences on production.
RESUMO
The duration of the vaccination campaign sufficient to eliminate lumpy skin disease (LSD) mainly depends on the vaccination effectiveness and coverage achieved. By using a spread epidemiological model, assuming a vaccination effectiveness of 65%, with 50% and 90% coverage, 4 and 3 years campaigns, respectively, are needed to eliminate LSD. When vaccination effectiveness is 80% to 95%, 2 years of vaccination at coverage of 90% is sufficient to eliminate LSD virus (LSDV). For shorter campaigns, LSD is predicted to persist. When the infection is eliminated by vaccination, two pathways for disease recurrence are possible, (i) by new introduction from a neighbouring affected area, especially by introduction of infected animals, or, less likely (ii) the infection persisting either in the environment, in vectors or in wild animals. For planning surveillance, several elements should be considered: the objectives and related design prevalence, the epidemiological situation, the immunological status of the host population, the geographical area and the season, the type of surveillance (active or passive), the diagnostic methods including clinical detection (considered the most effective method for early detection of LSD), the target population, the sample size and frequency. According to the model, for early detecting new introductions of LSD, it may be needed to clinically check a large number of herds (e.g. 2-3,000 herds) monthly. Lower sample sizes can be considered, when a greater delay in detecting the virus is acceptable. Where vaccination is maintained, active surveillance for verifying the effectiveness of vaccination would be needed. Demonstrating disease absence can rely on serological surveillance, which should consider the test sensitivity, the design prevalence (estimated value: 3.5%), the onset and duration of serum antibodies. Important knowledge gaps on LSD are about within-herd transmission, duration of protective immunity, role of vectors, diagnostic tests, farm location and type in the at-risk countries and the epidemiological status of neighbouring countries.