Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
PLoS Pathog ; 18(7): e1010695, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35788221

RESUMO

Chikungunya virus (CHIKV) is an emerging/re-emerging mosquito-borne pathogen responsible for explosive epidemics of febrile illness characterized by debilitating polyarthralgia and the risk of lethal infection among the most severe cases. Despite the public health risk posed by CHIKV, no vaccine is currently available. Using a site-directed hydrogen peroxide-based inactivation approach, we developed a new CHIKV vaccine, HydroVax-CHIKV. This vaccine technology was compared to other common virus inactivation approaches including ß-propiolactone (BPL), formaldehyde, heat, and ultraviolet (UV) irradiation. Heat, UV, and BPL were efficient at inactivating CHIKV-181/25 but caused substantial damage to neutralizing epitopes and failed to induce high-titer neutralizing antibodies in vaccinated mice. HydroVax-CHIKV and formaldehyde-inactivated CHIKV retained intact neutralizing epitopes similar to live virus controls but the HydroVax-CHIKV approach demonstrated a more rapid rate of virus inactivation. HydroVax-CHIKV vaccination induced high neutralizing responses to homologous and heterologous CHIKV clades as well as to other alphaviruses including Mayaro virus, O'nyong'nyong virus, and Una virus. Following heterologous infection with CHIKV-SL15649, HydroVax-CHIKV-immunized mice were protected against viremia, CHIKV-associated arthritic disease, and lethal CHIKV infection by an antibody-dependent mechanism. In contrast, animals vaccinated with Heat- or UV-inactivated virus showed no protection against viremia in addition to demonstrating significantly exacerbated CD4+ T cell-mediated footpad swelling after CHIKV infection. Together, these results demonstrate the risks associated with using suboptimal inactivation methods that fail to elicit protective neutralizing antibody responses and show that HydroVax-CHIKV represents a promising new vaccine candidate for prevention of CHIKV-associated disease.


Assuntos
Febre de Chikungunya , Vírus Chikungunya , Vacinas Virais , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , Febre de Chikungunya/prevenção & controle , Epitopos , Formaldeído , Camundongos , Viremia
2.
PLoS Pathog ; 17(8): e1009380, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34411201

RESUMO

Human cytomegalovirus (HCMV) microRNAs (miRNAs) significantly rewire host signaling pathways to support the viral lifecycle and regulate host cell responses. Here we show that SMAD3 expression is regulated by HCMV miR-UL22A and contributes to the IRF7-mediated induction of type I IFNs and IFN-stimulated genes (ISGs) in human fibroblasts. Addition of exogenous TGFß interferes with the replication of a miR-UL22A mutant virus in a SMAD3-dependent manner in wild type fibroblasts, but not in cells lacking IRF7, indicating that downregulation of SMAD3 expression to limit IFN induction is important for efficient lytic replication. These findings uncover a novel interplay between SMAD3 and innate immunity during HCMV infection and highlight the role of viral miRNAs in modulating these responses.


Assuntos
Infecções por Citomegalovirus/microbiologia , Citomegalovirus/fisiologia , Fibroblastos/microbiologia , Imunidade Inata/imunologia , Interferon Tipo I/metabolismo , MicroRNAs/genética , Fator de Crescimento Transformador beta/metabolismo , Fibroblastos/imunologia , Fibroblastos/patologia , Interações Hospedeiro-Patógeno , Humanos , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/metabolismo , Interferon Tipo I/genética , Proteína Smad3/genética , Proteína Smad3/metabolismo , Fator de Crescimento Transformador beta/genética , Fenômenos Fisiológicos Virais
3.
Curr Top Microbiol Immunol ; 435: 81-106, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-31338593

RESUMO

Chikungunya is a clinically and economically important arbovirus that has spread globally in the twenty-first century. While uncommonly fatal, infection with the virus can lead to incapacitating arthralgia that can persist for months to years. The adverse impacts of viral spread are most severe in developing low- and middle-income countries in which medical infrastructure is insufficient and manual labor is an economic driver. Unfortunately, no prophylactic or therapeutic treatments are approved for human use to combat the virus. Historically, vaccination has proven to be the most efficient and successful strategy for protecting populations and eradicating infectious disease. A large and diverse range of promising vaccination approaches for use against Chikungunya has emerged in recent years and been shown to safely elicit protective immune responses in animal models and humans. Importantly, many of these are based on technologies that have been clinically approved for use against other pathogens. Furthermore, clinical trials are currently ongoing for a subset of these. The purpose of this review is to provide a description of the relevant immunobiology of Chikungunya infection, to present immune-stimulating technologies that have been successfully employed to protect against infection, and discuss priorities and challenges regarding the future development of a vaccine for clinical use.


Assuntos
Febre de Chikungunya , Vírus Chikungunya , Vacinas Virais , Animais , Febre de Chikungunya/prevenção & controle , Humanos , Vacinação
4.
Artigo em Inglês | MEDLINE | ID: mdl-30917980

RESUMO

Alphaviruses are arthropod-transmitted RNA viruses that can cause arthralgia, myalgia, and encephalitis in humans. Since the role of cellular kinases in alphavirus replication is unknown, we profiled kinetic changes in host kinase abundance and phosphorylation following chikungunya virus (CHIKV) infection of fibroblasts. Based upon the results of this study, we treated CHIKV-infected cells with kinase inhibitors targeting the Src family kinase (SFK)-phosphatidylinositol 3-kinase (PI3K)-AKT-mTORC signaling pathways. Treatment of cells with SFK inhibitors blocked the replication of CHIKV as well as multiple other alphaviruses, including Mayaro virus, O'nyong-nyong virus, Ross River virus, and Venezuelan equine encephalitis virus. Dissecting the effect of SFK inhibition on alphavirus replication, we found that viral structural protein levels were significantly reduced, but synthesis of viral genomic and subgenomic RNAs was unaffected. By measuring the association of viral RNA with polyribosomes, we found that the SFK inhibitor dasatinib blocks alphavirus subgenomic RNA translation. Our results demonstrate a role for SFK signaling in alphavirus subgenomic RNA translation and replication. Targeting host factors involved in alphavirus replication represents an innovative, perhaps paradigm-shifting, strategy for exploring the replication of CHIKV and other alphaviruses while promoting antiviral therapeutic development.


Assuntos
Infecções por Alphavirus/tratamento farmacológico , Alphavirus/efeitos dos fármacos , Biossíntese de Proteínas/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , RNA Mensageiro/genética , Quinases da Família src/genética , Alphavirus/genética , Infecções por Alphavirus/virologia , Animais , Antivirais/farmacologia , Linhagem Celular , Chlorocebus aethiops , Genoma Viral/efeitos dos fármacos , Genoma Viral/genética , Humanos , Camundongos Knockout , Fosfatidilinositol 3-Quinases/genética , RNA Viral/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Células Vero , Proteínas Virais/genética , Replicação Viral/efeitos dos fármacos , Replicação Viral/genética
6.
PLoS Pathog ; 13(3): e1006219, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28278237

RESUMO

Zika virus (ZIKV), an emerging flavivirus, has recently spread explosively through the Western hemisphere. In addition to symptoms including fever, rash, arthralgia, and conjunctivitis, ZIKV infection of pregnant women can cause microcephaly and other developmental abnormalities in the fetus. We report herein the results of ZIKV infection of adult rhesus macaques. Following subcutaneous infection, animals developed transient plasma viremia and viruria from 1-7 days post infection (dpi) that was accompanied by the development of a rash, fever and conjunctivitis. Animals produced a robust adaptive immune response to ZIKV, although systemic cytokine response was minimal. At 7 dpi, virus was detected in peripheral nervous tissue, multiple lymphoid tissues, joints, and the uterus of the necropsied animals. Notably, viral RNA persisted in neuronal, lymphoid and joint/muscle tissues and the male and female reproductive tissues through 28 to 35 dpi. The tropism and persistence of ZIKV in the peripheral nerves and reproductive tract may provide a mechanism of subsequent neuropathogenesis and sexual transmission.


Assuntos
Infecção por Zika virus/patologia , Infecção por Zika virus/virologia , Animais , Separação Celular , Ensaio de Imunoadsorção Enzimática , Feminino , Citometria de Fluxo , Hibridização In Situ , Macaca mulatta , Masculino , Testes de Neutralização , Reação em Cadeia da Polimerase , Viremia/virologia , Zika virus
7.
PLoS Pathog ; 12(10): e1005891, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27736984

RESUMO

Chikungunya virus (CHIKV) is a re-emerging global pathogen with pandemic potential, which causes fever, rash and debilitating arthralgia. Older adults over 65 years are particularly susceptible to severe and chronic CHIKV disease (CHIKVD), accounting for >90% of all CHIKV-related deaths. There are currently no approved vaccines or antiviral treatments available to limit chronic CHIKVD. Here we show that in old mice excessive, dysregulated TGFß production during acute infection leads to a reduced immune response and subsequent chronic disease. Humans suffering from CHIKV infection also exhibited high TGFß levels and a pronounced age-related defect in neutralizing anti-CHIKV antibody production. In vivo reduction of TGFß levels minimized acute joint swelling, restored neutralizing antibody production and diminished chronic joint pathology in old mice. This study identifies increased and dysregulated TGFß secretion as one key mechanism contributing to the age-related loss of protective anti-CHIKV-immunity leading to chronic CHIKVD.


Assuntos
Envelhecimento/imunologia , Febre de Chikungunya/imunologia , Fator de Crescimento Transformador beta/imunologia , Adulto , Idoso , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Vírus Chikungunya , Modelos Animais de Doenças , Suscetibilidade a Doenças , Ensaio de Imunoadsorção Enzimática , Feminino , Citometria de Fluxo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase , Fator de Crescimento Transformador beta/biossíntese
8.
PLoS Pathog ; 11(5): e1004901, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25973608

RESUMO

Varicella zoster virus (VZV) causes chickenpox in humans and, subsequently, establishes latency in the sensory ganglia from where it reactivates to cause herpes zoster. Infection of rhesus macaques with simian varicella virus (SVV) recapitulates VZV pathogenesis in humans thus representing a suitable animal model for VZV infection. While the type I interferon (IFN) response has been shown to affect VZV replication, the virus employs counter mechanisms to prevent the induction of anti-viral IFN stimulated genes (ISG). Here, we demonstrate that SVV inhibits type I IFN-activated signal transduction via the JAK-STAT pathway. SVV-infected rhesus fibroblasts were refractory to IFN stimulation displaying reduced protein levels of IRF9 and lacking STAT2 phosphorylation. Since previous work implicated involvement of the VZV immediate early gene product ORF63 in preventing ISG-induction we studied the role of SVV ORF63 in generating resistance to IFN treatment. Interestingly, SVV ORF63 did not affect STAT2 phosphorylation but caused IRF9 degradation in a proteasome-dependent manner, suggesting that SVV employs multiple mechanisms to counteract the effect of IFN. Control of SVV ORF63 protein levels via fusion to a dihydrofolate reductase (DHFR)-degradation domain additionally confirmed its requirement for viral replication. Our results also show a prominent reduction of IRF9 and inhibition of STAT2 phosphorylation in VZV-infected cells. In addition, cells expressing VZV ORF63 blocked IFN-stimulation and displayed reduced levels of the IRF9 protein. Taken together, our data suggest that varicella ORF63 prevents ISG-induction both directly via IRF9 degradation and indirectly via transcriptional control of viral proteins that interfere with STAT2 phosphorylation. SVV and VZV thus encode multiple viral gene products that tightly control IFN-induced anti-viral responses.


Assuntos
Infecções por Herpesviridae/metabolismo , Interações Hospedeiro-Patógeno , Interferon Tipo I/metabolismo , Janus Quinases/metabolismo , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais , Varicellovirus/fisiologia , Animais , Linhagem Celular , Cercopithecinae , Varicela/imunologia , Varicela/metabolismo , Varicela/patologia , Varicela/virologia , DNA Recombinante/metabolismo , Regulação Viral da Expressão Gênica , Infecções por Herpesviridae/imunologia , Infecções por Herpesviridae/patologia , Infecções por Herpesviridae/virologia , Herpesvirus Humano 3/imunologia , Herpesvirus Humano 3/fisiologia , Humanos , Proteínas Imediatamente Precoces/genética , Proteínas Imediatamente Precoces/metabolismo , Imunidade Inata , Interferon Tipo I/antagonistas & inibidores , Fator Gênico 3 Estimulado por Interferon, Subunidade gama/antagonistas & inibidores , Fator Gênico 3 Estimulado por Interferon, Subunidade gama/genética , Fator Gênico 3 Estimulado por Interferon, Subunidade gama/metabolismo , Fosforilação , Complexo de Endopeptidases do Proteassoma , Processamento de Proteína Pós-Traducional , Proteólise , Proteínas Recombinantes/metabolismo , Fatores de Transcrição STAT/genética , Varicellovirus/imunologia
9.
PLoS Pathog ; 11(12): e1005324, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26646986

RESUMO

Pharmacologic stimulation of innate immune processes represents an attractive strategy to achieve multiple therapeutic outcomes including inhibition of virus replication, boosting antitumor immunity, and enhancing vaccine immunogenicity. In light of this we sought to identify small molecules capable of activating the type I interferon (IFN) response by way of the transcription factor IFN regulatory factor 3 (IRF3). A high throughput in vitro screen yielded 4-(2-chloro-6-fluorobenzyl)-N-(furan-2-ylmethyl)-3-oxo-3,4-dihydro-2H-benzo[b][1,4]thiazine-6-carboxamide (referred to herein as G10), which was found to trigger IRF3/IFN-associated transcription in human fibroblasts. Further examination of the cellular response to this molecule revealed expression of multiple IRF3-dependent antiviral effector genes as well as type I and III IFN subtypes. This led to the establishment of a cellular state that prevented replication of emerging Alphavirus species including Chikungunya virus, Venezuelan Equine Encephalitis virus, and Sindbis virus. To define cellular proteins essential to elicitation of the antiviral activity by the compound we employed a reverse genetics approach that utilized genome editing via CRISPR/Cas9 technology. This allowed the identification of IRF3, the IRF3-activating adaptor molecule STING, and the IFN-associated transcription factor STAT1 as required for observed gene induction and antiviral effects. Biochemical analysis indicates that G10 does not bind to STING directly, however. Thus the compound may represent the first synthetic small molecule characterized as an indirect activator of human STING-dependent phenotypes. In vivo stimulation of STING-dependent activity by an unrelated small molecule in a mouse model of Chikungunya virus infection blocked viremia demonstrating that pharmacologic activation of this signaling pathway may represent a feasible strategy for combating emerging Alphaviruses.


Assuntos
Antivirais/farmacologia , Febre de Chikungunya/imunologia , Proteínas de Membrana/agonistas , Transdução de Sinais/imunologia , Tiazinas/farmacologia , Alphavirus/imunologia , Infecções por Alphavirus/imunologia , Animais , Células Cultivadas , Vírus Chikungunya/imunologia , Ensaios de Triagem em Larga Escala , Humanos , Immunoblotting , Fator Regulador 3 de Interferon/imunologia , Proteínas de Membrana/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos
10.
J Virol ; 89(17): 8687-700, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26085158

RESUMO

UNLABELLED: Varicella-zoster virus (VZV) causes chickenpox upon primary infection and establishes latency in ganglia. Reactivation from latency causes herpes zoster, which may be complicated by postherpetic neuralgia. Innate immunity mediated by interferon and proinflammatory cytokines represents the first line of immune defense upon infection and reactivation. VZV is known to interfere with multiple innate immune signaling pathways, including the central transcription factor NF-κB. However, the role of these inhibitory mechanisms in vivo is unknown. Simian varicella virus (SVV) infection of rhesus macaques recapitulates key aspects of VZV pathogenesis, and this model thus permits examination of the role of immune evasion mechanisms in vivo. Here, we compare SVV and VZV with respect to interference with NF-κB activation. We demonstrate that both viruses prevent ubiquitination of the NF-κB inhibitor IκBα, whereas SVV additionally prevents IκBα phosphorylation. We show that the ORF61 proteins of VZV and SVV are sufficient to prevent IκBα ubiquitination upon ectopic expression. We further demonstrate that SVV ORF61 interacts with ß-TrCP, a subunit of the SCF ubiquitin ligase complex that mediates the degradation of IκBα. This interaction seems to inactivate SCF-mediated protein degradation in general, since the unrelated ß-TrCP target Snail is also stabilized by ORF61. In addition to ORF61, SVV seems to encode additional inhibitors of the NF-κB pathway, since SVV with ORF61 deleted still prevented IκBα phosphorylation and degradation. Taken together, our data demonstrate that SVV interferes with tumor necrosis factor alpha (TNF-α)-induced NF-κB activation at multiple levels, which is consistent with the importance of these countermechanisms for varicella virus infection. IMPORTANCE: The role of innate immunity during the establishment of primary infection, latency, and reactivation by varicella-zoster virus (VZV) is incompletely understood. Since infection of rhesus macaques by simian varicella virus (SVV) is used as an animal model of VZV infection, we characterized the molecular mechanism by which SVV interferes with innate immune activation. Specifically, we studied how SVV prevents activation of the transcription factor NF-κB, a central factor in eliciting proinflammatory responses. The identification of molecular mechanisms that counteract innate immunity might ultimately lead to better vaccines and treatments for VZV, since overcoming these mechanisms, either by small-molecule inhibition or by genetic modification of vaccine strains, is expected to reduce the pathogenic potential of VZV. Moreover, using SVV infection of rhesus macaques, it will be possible to study how increasing the vulnerability of varicella viruses to innate immunity will impact viral pathogenesis.


Assuntos
Herpesvirus Humano 3/genética , Proteínas I-kappa B/metabolismo , NF-kappa B/antagonistas & inibidores , Fator de Necrose Tumoral alfa/metabolismo , Proteínas Virais/metabolismo , Animais , Linhagem Celular , Varicela/imunologia , Varicela/virologia , Modelos Animais de Doenças , Ativação Enzimática , Deleção de Genes , Células HEK293 , Herpesvirus Humano 3/imunologia , Humanos , Evasão da Resposta Imune/imunologia , Imunidade Inata/imunologia , Macaca mulatta , Inibidor de NF-kappaB alfa , NF-kappa B/metabolismo , Fosforilação , Proteínas Ligases SKP Culina F-Box/metabolismo , Fatores de Transcrição da Família Snail , Fatores de Transcrição/metabolismo , Ubiquitinação , Carga Viral , Proteínas Virais/genética , Ativação Viral/imunologia , Proteínas Contendo Repetições de beta-Transducina/metabolismo
11.
J Virol ; 89(15): 8011-25, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26018150

RESUMO

UNLABELLED: The cytosolic RIG-I (retinoic acid-inducible gene I) receptor plays a pivotal role in the initiation of the immune response against RNA virus infection by recognizing short 5'-triphosphate (5'ppp)-containing viral RNA and activating the host antiviral innate response. In the present study, we generated novel 5'ppp RIG-I agonists of varieous lengths, structures, and sequences and evaluated the generation of the antiviral and inflammatory responses in human epithelial A549 cells, human innate immune primary cells, and murine models of influenza and chikungunya viral pathogenesis. A 99-nucleotide, uridine-rich hairpin 5'pppRNA termed M8 stimulated an extensive and robust interferon response compared to other modified 5'pppRNA structures, RIG-I aptamers, or poly(I·C). Interestingly, manipulation of the primary RNA sequence alone was sufficient to modulate antiviral activity and inflammatory response, in a manner dependent exclusively on RIG-I and independent of MDA5 and TLR3. Both prophylactic and therapeutic administration of M8 effectively inhibited influenza virus and dengue virus replication in vitro. Furthermore, multiple strains of influenza virus that were resistant to oseltamivir, an FDA-approved therapeutic treatment for influenza, were highly sensitive to inhibition by M8. Finally, prophylactic M8 treatment in vivo prolonged survival and reduced lung viral titers of mice challenged with influenza virus, as well as reducing chikungunya virus-associated foot swelling and viral load. Altogether, these results demonstrate that 5'pppRNA can be rationally designed to achieve a maximal RIG-I-mediated protective antiviral response against human-pathogenic RNA viruses. IMPORTANCE: The development of novel therapeutics to treat human-pathogenic RNA viral infections is an important goal to reduce spread of infection and to improve human health and safety. This study investigated the design of an RNA agonist with enhanced antiviral and inflammatory properties against influenza, dengue, and chikungunya viruses. A novel, sequence-dependent, uridine-rich RIG-I agonist generated a protective antiviral response in vitro and in vivo and was effective at concentrations 100-fold lower than prototype sequences or other RNA agonists, highlighting the robust activity and potential clinical use of the 5'pppRNA against RNA virus infection. Altogether, the results identify a novel, sequence-specific RIG-I agonist as an attractive therapeutic candidate for the treatment of a broad range of RNA viruses, a pressing issue in which a need for new and more effective options persists.


Assuntos
Vírus Chikungunya/imunologia , RNA Helicases DEAD-box/imunologia , Vírus da Dengue/imunologia , Vírus da Influenza A Subtipo H1N1/imunologia , RNA Viral/agonistas , RNA Viral/imunologia , Viroses/imunologia , Animais , Linhagem Celular , Vírus Chikungunya/química , Vírus Chikungunya/genética , Proteína DEAD-box 58 , RNA Helicases DEAD-box/genética , Vírus da Dengue/química , Vírus da Dengue/genética , Humanos , Vírus da Influenza A Subtipo H1N1/química , Vírus da Influenza A Subtipo H1N1/genética , Camundongos , Camundongos Endogâmicos BALB C , Conformação de Ácido Nucleico , RNA Viral/genética , Receptores Imunológicos , Viroses/genética , Viroses/virologia
12.
J Virol ; 85(1): 606-20, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20962078

RESUMO

Chikungunya virus (CHIKV) is an arthritogenic mosquito-transmitted alphavirus that is undergoing reemergence in areas around the Indian Ocean. Despite the current and potential danger posed by this virus, we know surprisingly little about the induction and evasion of CHIKV-associated antiviral immune responses. With this in mind we investigated innate immune reactions to CHIKV in human fibroblasts, a demonstrable in vivo target of virus replication and spread. We show that CHIKV infection leads to activation of the transcription factor interferon regulatory factor 3 (IRF3) and subsequent transcription of IRF3-dependent antiviral genes, including beta interferon (IFN-ß). IRF3 activation occurs by way of a virus-induced innate immune signaling pathway that includes the adaptor molecule interferon promoter stimulator 1 (IPS-1). Despite strong transcriptional upregulation of these genes, however, translation of the corresponding proteins is not observed. We further demonstrate that translation of cellular (but not viral) genes is blocked during infection and that although CHIKV is found to trigger inactivation of the translational molecule eukaryotic initiation factor subunit 2α by way of the double-stranded RNA sensor protein kinase R, this response is not required for the block to protein synthesis. Furthermore, overall diminution of cellular RNA synthesis is also observed in the presence of CHIKV and transcription of IRF3-dependent antiviral genes appears specifically blocked late in infection. We hypothesize that the observed absence of IFN-ß and antiviral proteins during infection results from an evasion mechanism exhibited by CHIKV that is dependent on widespread shutoff of cellular protein synthesis and a targeted block to late synthesis of antiviral mRNA transcripts.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Vírus Chikungunya/patogenicidade , Regulação da Expressão Gênica , Evasão da Resposta Imune/imunologia , Imunidade Inata/imunologia , Biossíntese de Proteínas/imunologia , eIF-2 Quinase/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Linhagem Celular , Células Cultivadas , Vírus Chikungunya/imunologia , Cricetinae , Fibroblastos/imunologia , Fibroblastos/virologia , Humanos , Interferon beta , Proteínas/genética , Proteínas/metabolismo
13.
J Virol ; 84(1): 585-98, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19846511

RESUMO

Human cytomegalovirus (HCMV) is a member of the betaherpesvirus family that, unlike other herpesviruses, triggers a strong innate immune response in infected cells that includes transcription of the beta interferon gene via activation of interferon regulatory factor 3 (IRF3). IRF3 activation requires signaling from pattern recognition receptors that is initiated by their interaction with specific pathogen-associated molecules. However, while IRF3-activating pathways are increasingly well characterized, the cellular molecules involved in HCMV-mediated IRF3-dependent beta interferon transcription are virtually unknown. We undertook a systematic examination of new and established IRF3-terminal pathway components to identify those that are essential to HCMV-triggered IRF3 activation. We show here that IRF3 activation induced by HCMV infection involves the newly identified protein STING but, in contrast to infections with other herpesviruses, occurs independently of the adaptor molecule IPS-1. We also show that the protein DDX3 contributes to HCMV-triggered expression of beta interferon. Moreover, we identify Z-DNA binding protein 1 (ZBP1) as being essential for IRF3 activation and interferon beta expression triggered by HCMV, as well as being sufficient to enhance HCMV-stimulated beta interferon transcription and secretion. ZBP1 transcription was also found to be induced following exposure to HCMV in a JAK/STAT-dependent manner, thus perhaps also contributing to a positive feedback signal. Finally, we show that constitutive overexpression of ZBP1 inhibits HCMV replication. ZBP1 was recently identified as a cytosolic pattern recognition receptor of double-stranded DNA, and thus, we propose a model for HCMV-mediated IRF3 activation that involves HCMV-associated DNA as the principal innate immune-activating pathogen-associated molecular pattern.


Assuntos
Citomegalovirus/imunologia , Proteínas de Ligação a DNA/fisiologia , Interferon beta/genética , Células Cultivadas , RNA Helicases DEAD-box , DNA , Fibroblastos/virologia , Humanos , Imunidade Inata , Fator Regulador 3 de Interferon/metabolismo , Proteínas de Membrana , Proteínas de Ligação a RNA , Transcrição Gênica , Ativação Transcricional
14.
J Virol ; 84(17): 8913-25, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20573816

RESUMO

In vitro infection of cells with the betaherpesvirus human cytomegalovirus (HCMV) stimulates an innate immune response characterized by phosphorylation of the transcription factor interferon regulatory factor 3 (IRF3) and subsequent expression of IRF3-dependent genes. While previous work suggests that HCMV envelope glycoprotein B is responsible for initiating this reaction, the signaling pathways stimulated by virus infection that lead to IRF3 phosphorylation have largely been uncharacterized. Recently, we identified Z DNA binding protein 1 (ZBP1), a sensor of cytoplasmic DNA, as an essential protein for this response. We now describe a human fibroblast cell line exhibiting a recessive defect that results in the absence of activation of IRF3 following treatment with HCMV but not Sendai virus or double-stranded RNA. In addition, we show that while exposure of these cells to soluble HCMV glycoprotein B is capable of triggering IRF3-dependent gene transcription, transfection of the cells with double-stranded DNA is not. Furthermore, we show that overexpression of ZBP1 in these cells reestablishes their ability to secrete interferon in response to HCMV and that multiple ZBP1 transcriptional variants exist in both wild-type and mutant cells. These results have two major implications for the understanding of innate immune stimulation by HCMV. First, they demonstrate that HCMV glycoprotein B is not the essential molecular pattern that induces an IRF3-dependent innate immune response. Second, IRF3-terminal signaling triggered by HCMV particles closely resembles that which is activated by cytoplasmic double-stranded DNA.


Assuntos
Infecções por Citomegalovirus/imunologia , Citomegalovirus/imunologia , Citoplasma/imunologia , DNA/imunologia , Interferon beta/imunologia , Proteínas do Envelope Viral/imunologia , Linhagem Celular , Citomegalovirus/genética , Infecções por Citomegalovirus/genética , Infecções por Citomegalovirus/metabolismo , Infecções por Citomegalovirus/virologia , Citoplasma/genética , Citoplasma/virologia , DNA/genética , Humanos , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/imunologia , Fator Regulador 3 de Interferon/metabolismo , Fosforilação , Transporte Proteico , Proteínas do Envelope Viral/genética
15.
Front Microbiol ; 11: 24, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32117091

RESUMO

The dengue virus presents a serious threat to human health globally and can cause severe, even life-threatening, illness. Dengue virus (DENV) is endemic on all continents except Antarctica, and it is estimated that more than 100 million people are infected each year. Herein, we further mine the data from a previously described screen for microRNAs (miRNAs) that block flavivirus replication. We use miR-424, a member of the miR-15/16 family, as a tool to further dissect the role of host cell proteins during DENV infection. We observed that miR-424 suppresses expression of the E3 ubiquitin ligase SIAH1, which is normally induced during dengue virus 2 (DENV2) infection through activation of the unfolded protein response (UPR). Specific siRNA-mediated knockdown of SIAH1 also results in inhibition of DENV replication, demonstrating that this target is at least partly responsible for the antiviral activity of miR-424. We further show that SIAH1 binds to and ubiquitinates the innate immune adaptor protein MyD88 and that the antiviral effect of SIAH1 knockdown is reduced in cells in which MyD88 has been deleted by CRISPR/Cas9 gene editing. Additionally, MyD88-dependent signaling, triggered either by DENV2 infection or the Toll-like receptor 7 (TLR7) ligand imiquimod, is increased in cells in which SIAH1 has been knocked down by miR-424 or a SIAH1-specific siRNA. These observations suggest an additional pathway by which DENV2 harnesses aspects of the UPR to dampen the host innate immune response and promote viral replication.

16.
PLoS One ; 15(2): e0229570, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32101570

RESUMO

The proinflammatory cytokines interleukin (IL)-1ß and IL-18 are products of activation of the inflammasome, an innate sensing system, and important in the pathogenesis of herpes simplex virus type 1 (HSV-1). The release of IL-18 and IL-1ß from monocytes/macrophages is critical for protection from HSV-1 based on animal models of encephalitis and genital infection, yet if and how HSV-1 activates inflammasomes in human macrophages is unknown. To investigate this, we utilized both primary human monocyte derived macrophages and human monocytic cell lines (THP-1 cells) with various inflammasome components knocked-out. We found that HSV-1 activates inflammasome signaling in proinflammatory primary human macrophages, but not in resting macrophages. Additionally, HSV-1 inflammasome activation in THP-1 cells is dependent on nucleotide-binding domain and leucine-rich repeat-containing receptor 3 (NLRP3), apoptosis-associated speck-like molecule containing a caspase recruitment domain (ASC), and caspase-1, but not on absent in melanoma 2 (AIM2), or gamma interferon-inducible protein 16 (IFI16). In contrast, HSV-1 activates non-canonical inflammasome signaling in proinflammatory macrophages that results in IL-1ß, but not IL-18, release that is independent of NLRP3, ASC, and caspase-1. Ultraviolet irradiation of HSV-1 enhanced inflammasome activation, demonstrating that viral replication suppresses inflammasome activation. These results confirm that HSV-1 is capable of activating the inflammasome in human macrophages through an NLRP3 dependent process and that the virus has evolved an NLRP3 specific mechanism to inhibit inflammasome activation in macrophages.


Assuntos
Herpesvirus Humano 1/metabolismo , Inflamassomos/metabolismo , Macrófagos/metabolismo , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Proteínas de Transporte/metabolismo , Caspase 1/metabolismo , Citocinas/metabolismo , Humanos , Interleucina-18/metabolismo , Interleucina-1beta/metabolismo , Monócitos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Cultura Primária de Células , Transdução de Sinais/efeitos dos fármacos , Células THP-1
17.
Front Immunol ; 11: 1430, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32733475

RESUMO

The innate immune response to cytosolic DNA involves transcriptional activation of type I interferons (IFN-I) and proinflammatory cytokines. This represents the culmination of intracellular signaling pathways that are initiated by pattern recognition receptors that engage DNA and require the adaptor protein Stimulator of Interferon Genes (STING). These responses lead to the generation of cellular and tissue states that impair microbial replication and facilitate the establishment of long-lived, antigen-specific adaptive immunity. Ultimately this can lead to immune-mediated protection from infection but also to the cytotoxic T cell-mediated clearance of tumor cells. Intriguingly, pharmacologic activation of STING-dependent phenotypes is known to enhance both vaccine-associated immunogenicity and immune-based anti-tumor therapies. Unfortunately, the STING protein exists as multiple variant forms in the human population that exhibit differences in their reactivity to chemical stimuli and in the intensity of molecular signaling they induce. In light of this, STING-targeting drug discovery efforts require an accounting of protein variant-specific activity. Herein we describe a small molecule termed M04 that behaves as a novel agonist of human STING. Importantly, we find that the molecule exhibits a differential ability to activate STING based on the allelic variant examined. Furthermore, while M04 is inactive in mice, expression of human STING in mouse cells rescues reactivity to the compound. Using primary human cells in ex vivo assays we were also able to show that M04 is capable of simulating innate responses important for adaptive immune activation such as cytokine secretion, dendritic cell maturation, and T cell cross-priming. Collectively, this work demonstrates the conceivable utility of a novel agonist of human STING both as a research tool for exploring STING biology and as an immune potentiating molecule.


Assuntos
Imunidade Inata/efeitos dos fármacos , Fatores Imunológicos/farmacologia , Proteínas de Membrana/agonistas , Alelos , Animais , Descoberta de Drogas , Humanos , Imunidade Inata/imunologia , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , Camundongos
18.
mBio ; 10(1)2019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30755509

RESUMO

Secretion of interleukin-1ß (IL-1ß) represents a fundamental innate immune response to microbial infection that, at the molecular level, occurs following activation of proteolytic caspases that cleave the immature protein into a secretable form. Human cytomegalovirus (HCMV) is the archetypal betaherpesvirus that is invariably capable of lifelong infection through the activity of numerous virally encoded immune evasion phenotypes. Innate immune pathways responsive to cytoplasmic double-stranded DNA (dsDNA) are known to be activated in response to contact between HCMV and host cells. Here, we used clustered regularly interspaced short palindromic repeat (CRISPR)-CRISPR-associated protein 9 (Cas9) genome editing to demonstrate that the dsDNA receptor absent in melanoma 2 (AIM2) is required for secretion of IL-1ß following HCMV infection. Furthermore, dsDNA-responsive innate signaling induced by HCMV infection that leads to activation of the type I interferon response is also shown, unexpectedly, to play a contributory role in IL-1ß secretion. Importantly, we also show that rendering virus particles inactive by UV exposure leads to substantially increased IL-1ß processing and secretion and that live HCMV can inhibit this, suggesting the virus encodes factors that confer an inhibitory effect on this response. Further examination revealed that ectopic expression of the immediate early (IE) 86-kDa protein (IE86) is actually associated with a block in transcription of the pro-IL-1ß gene and, independently, diminishment of the immature protein. Overall, these results reveal two new and distinct phenotypes conferred by the HCMV IE86 protein, as well as an unusual circumstance in which a single herpesviral protein exhibits inhibitory effects on multiple molecular processes within the same innate immune response.IMPORTANCE Persistent infection with HCMV is associated with the operation of diverse evasion phenotypes directed at antiviral immunity. Obstruction of intrinsic and innate immune responses is typically conferred by viral proteins either associated with the viral particle or expressed immediately after entry. In line with this, numerous phenotypes are attributed to the HCMV IE86 protein that involve interference with innate immune processes via transcriptional and protein-directed mechanisms. We describe novel IE86-mediated phenotypes aimed at virus-induced secretion of IL-1ß. Intriguingly, while many viruses target the function of the molecular scaffold required for IL-1ß maturation to prevent this response, we find that HCMV and IE86 target the IL-1ß protein specifically. Moreover, we show that IE86 impairs both the synthesis of the IL-1ß transcript and the stability of the immature protein. This indicates an unusual phenomenon in which a single viral protein exhibits two molecularly separate evasion phenotypes directed at a single innate cytokine.


Assuntos
Citomegalovirus/fisiologia , Proteínas de Ligação a DNA/metabolismo , Proteínas Imediatamente Precoces/metabolismo , Evasão da Resposta Imune , Inflamassomos/metabolismo , Interleucina-1beta/metabolismo , Transativadores/metabolismo , Transcrição Gênica , Humanos , Proteólise , Células THP-1
19.
ACS Infect Dis ; 5(7): 1139-1149, 2019 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-31060350

RESUMO

Stimulator of interferon genes (STING) is an integral ER-membrane protein that can be activated by 2'3'-cGAMP synthesized by cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS) upon binding of double-stranded DNA. It activates interferon (IFN) and inflammatory cytokine responses to defend against infection by microorganisms. Pharmacologic activation of STING has been demonstrated to induce an antiviral state and boost antitumor immunity. We previously reported a cell-based high-throughput-screening assay that allowed for identification of small-molecule cGAS-STING-pathway agonists. We report herein a compound, 6-bromo-N-(naphthalen-1-yl)benzo[d][1,3]dioxole-5-carboxamide (BNBC), that induces a proinflammatory cytokine response in a human-STING-dependent manner. Specifically, we showed that BNBC induced type I and III IFN dominant cytokine responses in primary human fibroblasts and peripheral-blood mononuclear cells (PBMCs). BNBC also induced cytokine response in PBMC-derived myeloid dendritic cells and promoted their maturation, suggesting that STING-agonist treatment could potentially regulate the activation of CD4+ and CD8+ T lymphocytes. As anticipated, treatment of primary human fibroblast cells with BNBC induced an antiviral state that inhibited the infection of several kinds of flaviviruses. Taken together, our results indicate that BNBC is a human-STING agonist that not only induces innate antiviral immunity against a broad spectrum of viruses but may also stimulate the activation of adaptive immune responses, which is important for the treatment of chronic viral infections and tumors.


Assuntos
Antivirais/síntese química , Benzodioxóis/síntese química , Infecções por Flavivirus/imunologia , Interferons/metabolismo , Proteínas de Membrana/agonistas , Imunidade Adaptativa/efeitos dos fármacos , Antivirais/química , Antivirais/farmacologia , Benzodioxóis/química , Benzodioxóis/farmacologia , Células Cultivadas , Células Hep G2 , Ensaios de Triagem em Larga Escala , Humanos , Imunidade Inata/efeitos dos fármacos , Proteínas de Membrana/química , Estrutura Molecular , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Relação Estrutura-Atividade
20.
Adv Exp Med Biol ; 598: 309-24, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17892221

RESUMO

Cytomegaloviruses represent supreme pathogens in that they are capable of occupying healthy mammalian hosts for life in the face of constant antiviral immune reactions. The inability of the host to eliminate the virus likely results from numerous counteractive strategies employed to disrupt the immune response. The role of type I interferon in the antiviral response has been well documented although only recently have the pathways of induction of this powerful cytokine been described. Cytomegaloviruses have been shown to both induce and be sensitive to the effects of type I interferon. Yet these viruses also possess numerous and varied phenotypes capable of inhibiting not only interferon induction but also interferon signaling and interferon-induced antiviral processes. The balance between induction and evasion of type I interferon responses by cytomegaloviruses is discussed in this review.


Assuntos
Infecções por Citomegalovirus/imunologia , Citomegalovirus/imunologia , Imunidade Inata/fisiologia , Interferon Tipo I/imunologia , Animais , Regulação da Expressão Gênica , Humanos , Janus Quinases/metabolismo , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais/fisiologia , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA