Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Basic Res Cardiol ; 112(3): 23, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28299467

RESUMO

The myocardial response to pressure overload involves coordination of multiple transcriptional, posttranscriptional, and metabolic cues. The previous studies show that one such metabolic cue, O-GlcNAc, is elevated in the pressure-overloaded heart, and the increase in O-GlcNAcylation is required for cardiomyocyte hypertrophy in vitro. Yet, it is not clear whether and how O-GlcNAcylation participates in the hypertrophic response in vivo. Here, we addressed this question using patient samples and a preclinical model of heart failure. Protein O-GlcNAcylation levels were increased in myocardial tissue from heart failure patients compared with normal patients. To test the role of OGT in the heart, we subjected cardiomyocyte-specific, inducibly deficient Ogt (i-cmOgt -/-) mice and Ogt competent littermate wild-type (WT) mice to transverse aortic constriction. Deletion of cardiomyocyte Ogt significantly decreased O-GlcNAcylation and exacerbated ventricular dysfunction, without producing widespread changes in metabolic transcripts. Although some changes in hypertrophic and fibrotic signaling were noted, there were no histological differences in hypertrophy or fibrosis. We next determined whether significant differences were present in i-cmOgt -/- cardiomyocytes from surgically naïve mice. Interestingly, markers of cardiomyocyte dedifferentiation were elevated in Ogt-deficient cardiomyocytes. Although no significant differences in cardiac dysfunction were apparent after recombination, it is possible that such changes in dedifferentiation markers could reflect a larger phenotypic shift within the Ogt-deficient cardiomyocytes. We conclude that cardiomyocyte Ogt is not required for cardiomyocyte hypertrophy in vivo; however, loss of Ogt may exert subtle phenotypic differences in cardiomyocytes that sensitize the heart to pressure overload-induced ventricular dysfunction.


Assuntos
Cardiomegalia/metabolismo , Insuficiência Cardíaca/metabolismo , Miócitos Cardíacos/metabolismo , N-Acetilglucosaminiltransferases/metabolismo , Animais , Apoptose , Modelos Animais de Doenças , Humanos , Immunoblotting , Marcação In Situ das Extremidades Cortadas , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase
2.
Arthroscopy ; 32(12): 2628-2637, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27916191

RESUMO

Tears of the rotator cuff are frequent. An estimated 250,000 to 500,000 repairs are performed annually in the United States. Rotator cuff repairs have been successful despite fatty infiltration and atrophy of the rotator cuff muscles. Although the emphasis in rotator cuff repair has historically focused on re-establishing the tendon attachment, there is growing interest in and understanding of the role of the superior capsule. The superior capsule is attached to the undersurface of the supraspinatus and infraspinatus muscle-tendon units, and it resists superior translation of the humeral head. Herein, we propose that it is the defect in the superior capsule that is the "essential lesion" in a superior rotator cuff tear, as opposed to the defect in the rotator cuff itself. We propose that rotator cuff repair must restore the normal capsular anatomy to provide normal biomechanics of the joint and thus a positive clinical outcome.


Assuntos
Cápsula Articular/lesões , Lesões do Manguito Rotador/fisiopatologia , Articulação do Ombro/fisiopatologia , Artroplastia , Artroscopia , Humanos , Cabeça do Úmero/fisiologia , Cápsula Articular/fisiologia , Cápsula Articular/fisiopatologia , Cápsula Articular/cirurgia , Manguito Rotador/fisiologia , Manguito Rotador/cirurgia , Lesões do Manguito Rotador/cirurgia , Articulação do Ombro/fisiologia , Tendões
3.
J Biol Chem ; 289(43): 29665-76, 2014 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-25183011

RESUMO

Derangements in metabolism and related signaling pathways characterize the failing heart. One such signal, O-linked ß-N-acetylglucosamine (O-GlcNAc), is an essential post-translational modification regulated by two enzymes, O-GlcNAc transferase and O-GlcNAcase (OGA), which modulate the function of many nuclear and cytoplasmic proteins. We recently reported reduced OGA expression in the failing heart, which is consistent with the pro-adaptive role of increased O-GlcNAcylation during heart failure; however, molecular mechanisms regulating these enzymes during heart failure remain unknown. Using miRNA microarray analysis, we observed acute and chronic changes in expression of several miRNAs. Here, we focused on miR-539 because it was predicted to target OGA mRNA. Indeed, co-transfection of the OGA-3'UTR containing reporter plasmid and miR-539 overexpression plasmid significantly reduced reporter activity. Overexpression of miR-539 in neonatal rat cardiomyocytes significantly suppressed OGA expression and consequently increased O-GlcNAcylation; conversely, the miR-539 inhibitor rescued OGA protein expression and restored O-GlcNAcylation. In conclusion, this work identifies the first target of miR-539 in the heart and the first miRNA that regulates OGA. Manipulation of miR-539 may represent a novel therapeutic target in the treatment of heart failure and other metabolic diseases.


Assuntos
Insuficiência Cardíaca/genética , MicroRNAs/metabolismo , Regulação para Cima/genética , beta-N-Acetil-Hexosaminidases/metabolismo , Regiões 3' não Traduzidas/genética , Animais , Sequência de Bases , Hipóxia Celular/genética , Regulação para Baixo/genética , Glicosilação , Células HEK293 , Testes de Função Cardíaca , Humanos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Dados de Sequência Molecular , Infarto do Miocárdio/genética , Infarto do Miocárdio/fisiopatologia , Miocárdio/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Oxigênio/metabolismo , Ratos Sprague-Dawley
4.
Am J Physiol Heart Circ Physiol ; 309(8): H1326-35, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26342068

RESUMO

Numerous fibrotic and inflammatory changes occur in the failing heart. Recent evidence indicates that certain transcription factors, such as activating transcription factor 3 (ATF3), are activated during heart failure. Because ATF3 may be upregulated in the failing heart and affect inflammation, we focused on the potential role of ATF3 on postinfarct heart failure. We subjected anesthetized, wild-type mice to nonreperfused myocardial infarction and observed a significant induction in ATF3 expression and nuclear translocation. To test whether the induction of ATF3 affected the severity of heart failure, we subjected wild-type and ATF3-null mice to nonreperfused infarct-induced heart failure. There were no differences in cardiac function between the two genotypes, except at the 2-wk time point; however, ATF3-null mice survived the heart failure protocol at a significantly higher rate than the wild-type mice. Similar to the slight favorable improvements in chamber dimensions at 2 wk, we also observed greater cardiomyocyte hypertrophy and more fibrosis in the noninfarcted regions of the ATF3-null hearts compared with the wild-type. Nevertheless, there were no significant group differences at 4 wk. Furthermore, we found no significant differences in markers of inflammation between the wild-type and ATF3-null hearts. Our data suggest that ATF3 suppresses fibrosis early but not late during infarct-induced heart failure. Although ATF3 deficiency was associated with more fibrosis, this did not occur at the expense of survival, which was higher in the ATF3-null mice. Overall, ATF3 may serve a largely maladaptive role during heart failure.


Assuntos
Fator 3 Ativador da Transcrição/metabolismo , Insuficiência Cardíaca/etiologia , Infarto do Miocárdio/complicações , Miocárdio/metabolismo , Fator 3 Ativador da Transcrição/deficiência , Fator 3 Ativador da Transcrição/genética , Animais , Cardiomegalia/etiologia , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Modelos Animais de Doenças , Fibrose , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/fisiopatologia , Mediadores da Inflamação/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Miocárdio/patologia , Fatores de Tempo , Remodelação Ventricular
5.
Am J Physiol Heart Circ Physiol ; 306(1): H142-53, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24186210

RESUMO

The singly coded gene O-linked-ß-N-acetylglucosamine (O-GlcNAc) transferase (Ogt) resides on the X chromosome and is necessary for embryonic stem cell viability during embryogenesis. In mature cells, this enzyme catalyzes the posttranslational modification known as O-GlcNAc to various cellular proteins. Several groups, including our own, have shown that acute increases in protein O-GlcNAcylation are cardioprotective both in vitro and in vivo. Yet, little is known about how OGT affects cardiac function because total body knockout (KO) animals are not viable. Presently, we sought to establish the potential involvement of cardiomyocyte Ogt in cardiac maturation. Initially, we characterized a constitutive cardiomyocyte-specific (cm)OGT KO (c-cmOGT KO) mouse and found that only 12% of the c-cmOGT KO mice survived to weaning age (4 wk old); the surviving animals were smaller than their wild-type littermates, had dilated hearts, and showed overt signs of heart failure. Dysfunctional c-cmOGT KO hearts were more fibrotic, apoptotic, and hypertrophic. Several glycolytic genes were also upregulated; however, there were no gross changes in mitochondrial O2 consumption. Histopathology of the KO hearts indicated the potential involvement of endoplasmic reticulum stress, directing us to evaluate expression of 78-kDa glucose-regulated protein and protein disulfide isomerase, which were elevated. Additional groups of mice were subjected to inducible deletion of cmOGT, which did not produce overt dysfunction within the first couple of weeks of deletion. Yet, long-term loss (via inducible deletion) of cmOGT produced gradual and progressive cardiomyopathy. Thus, cardiomyocyte Ogt is necessary for maturation of the mammalian heart, and inducible deletion of cmOGT in the adult mouse produces progressive ventricular dysfunction.


Assuntos
Miócitos Cardíacos/metabolismo , N-Acetilglucosaminiltransferases/genética , Animais , Apoptose , Cardiomiopatia Dilatada/congênito , Cardiomiopatia Dilatada/patologia , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático , Fibrose/congênito , Fibrose/patologia , Deleção de Genes , Glicólise , Insuficiência Cardíaca/congênito , Insuficiência Cardíaca/patologia , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Camundongos , Camundongos Knockout , Miócitos Cardíacos/patologia , N-Acetilglucosaminiltransferases/metabolismo , Isomerases de Dissulfetos de Proteínas/genética , Isomerases de Dissulfetos de Proteínas/metabolismo
6.
Front Cell Dev Biol ; 4: 78, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27536657

RESUMO

Cell therapy improves cardiac function. Few cells have been investigated more extensively or consistently shown to be more effective than c-kit sorted cells; however, c-kit expression is easily lost during passage. Here, our primary goal was to develop an improved method to isolate c-kit(pos) cells and maintain c-kit expression after passaging. Cardiac mesenchymal cells (CMCs) from wild-type mice were selected by polystyrene adherence properties. CMCs adhering within the first hours are referred to as rapidly adherent (RA); CMCs adhering subsequently are dubbed slowly adherent (SA). Both RA and SA CMCs were c-kit sorted. SA CMCs maintained significantly higher c-kit expression than RA cells; SA CMCs also had higher expression endothelial markers. We subsequently tested the relative efficacy of SA vs. RA CMCs in the setting of post-infarct adoptive transfer. Two days after coronary occlusion, vehicle, RA CMCs, or SA CMCs were delivered percutaneously with echocardiographic guidance. SA CMCs, but not RA CMCs, significantly improved cardiac function compared to vehicle treatment. Although the mechanism remains to be elucidated, the more pronounced endothelial phenotype of the SA CMCs coupled with the finding of increased vascular density suggest a potential pro-vasculogenic action. This new method of isolating CMCs better preserves c-kit expression during passage. SA CMCs, but not RA CMCs, were effective in reducing cardiac dysfunction. Although c-kit expression was maintained, it is unclear whether maintenance of c-kit expression per se was responsible for improved function, or whether the differential adherence property itself confers a reparative phenotype independently of c-kit.

7.
Biores Open Access ; 5(1): 249-60, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27610271

RESUMO

Stem cell therapy has the potential to improve cardiac function after myocardial infarction (MI); however, existing methods to deliver cells to the myocardium, including intramyocardial injection, suffer from low engraftment rates. In this study, we used a rat model of acute MI to assess the effects of human mesenchymal stem cell (hMSC)-seeded fibrin biological sutures on cardiac function at 1 week after implant. Biological sutures were seeded with quantum dot (Qdot)-loaded hMSCs for 24 h before implantation. At 1 week postinfarct, the heart was imaged to assess mechanical function in the infarct region. Regional parameters assessed were regional stroke work (RSW) and systolic area of contraction (SAC) and global parameters derived from the pressure waveform. MI (n = 6) significantly decreased RSW (0.026 ± 0.011) and SAC (0.022 ± 0.015) when compared with sham operation (RSW: 0.141 ± 0.009; SAC: 0.166 ± 0.005, n = 6) (p < 0.05). The delivery of unseeded biological sutures to the infarcted hearts did not change regional mechanical function compared with the infarcted hearts (RSW: 0.032 ± 0.004, SAC: 0.037 ± 0.008, n = 6). The delivery of hMSC-seeded sutures exerted a trend toward increase of regional mechanical function compared with the infarcted heart (RSW: 0.057 ± 0.011; SAC: 0.051 ± 0.014, n = 6). Global function showed no significant differences between any group (p > 0.05); however, there was a trend toward improved function with the addition of either unseeded or seeded biological suture. Histology demonstrated that Qdot-loaded hMSCs remained present in the infarcted myocardium after 1 week. Analysis of serial sections of Masson's trichrome staining revealed that the greatest infarct size was in the infarct group (7.0% ± 2.2%), where unseeded (3.8% ± 0.6%) and hMSC-seeded (3.7% ± 0.8%) suture groups maintained similar infarct sizes. Furthermore, the remaining suture area was significantly decreased in the unseeded group compared with that in the hMSC-seeded group (p < 0.05). This study demonstrated that hMSC-seeded biological sutures are a method to deliver cells to the infarcted myocardium and have treatment potential.

8.
Circ Heart Fail ; 7(4): 634-42, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24762972

RESUMO

BACKGROUND: Cardiac hypertrophy and heart failure are associated with metabolic dysregulation and a state of chronic energy deficiency. Although several disparate changes in individual metabolic pathways have been described, there has been no global assessment of metabolomic changes in hypertrophic and failing hearts in vivo. Hence, we investigated the impact of pressure overload and infarction on myocardial metabolism. METHODS AND RESULTS: Male C57BL/6J mice were subjected to transverse aortic constriction or permanent coronary occlusion (myocardial infarction [MI]). A combination of LC/MS/MS and GC/MS techniques was used to measure 288 metabolites in these hearts. Both transverse aortic constriction and MI were associated with profound changes in myocardial metabolism affecting up to 40% of all metabolites measured. Prominent changes in branched-chain amino acids were observed after 1 week of transverse aortic constriction and 5 days after MI. Changes in branched-chain amino acids after MI were associated with myocardial insulin resistance. Longer duration of transverse aortic constriction and MI led to a decrease in purines, acylcarnitines, fatty acids, and several lysolipid and sphingolipid species but a marked increase in pyrimidines as well as ascorbate, heme, and other indices of oxidative stress. Cardiac remodeling and contractile dysfunction in hypertrophied hearts were associated with large increases in myocardial, but not plasma, levels of the polyamines putrescine and spermidine as well as the collagen breakdown product prolylhydroxyproline. CONCLUSIONS: These findings reveal extensive metabolic remodeling common to both hypertrophic and failing hearts that are indicative of extracellular matrix remodeling, insulin resistance and perturbations in amino acid, and lipid and nucleotide metabolism.


Assuntos
Cardiomegalia/metabolismo , Metabolismo Energético/fisiologia , Infarto do Miocárdio/metabolismo , Miocárdio/metabolismo , Estresse Oxidativo , Animais , Cardiomegalia/diagnóstico , Cardiomegalia/fisiopatologia , Modelos Animais de Doenças , Ecocardiografia , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/diagnóstico , Infarto do Miocárdio/fisiopatologia , Miocárdio/patologia , Volume Sistólico , Espectrometria de Massas em Tandem
9.
PLoS One ; 8(12): e83174, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24367585

RESUMO

Preclinical studies of animals with risk factors, and how those risk factors contribute to the development of cardiovascular disease and cardiac dysfunction, are clearly needed. One such approach is to feed mice a diet rich in fat (i.e. 60%). Here, we determined whether a high fat diet was sufficient to induce cardiac dysfunction in mice. We subjected mice to two different high fat diets (lard or milk as fat source) and followed them for over six months and found no significant decrement in cardiac function (via echocardiography), despite robust adiposity and impaired glucose disposal. We next determined whether antecedent and concomitant exposure to high fat diet (lard) altered the murine heart's response to infarct-induced heart failure; high fat feeding during, or before and during, heart failure did not significantly exacerbate cardiac dysfunction. Given the lack of a robust effect on cardiac dysfunction with high fat feeding, we then examined a commonly used mouse model of overt diabetes, hyperglycemia, and obesity (db/db mice). db/db mice (or STZ treated wild-type mice) subjected to pressure overload exhibited no significant exacerbation of cardiac dysfunction; however, ischemia-reperfusion injury significantly depressed cardiac function in db/db mice compared to their non-diabetic littermates. Thus, we were able to document a negative influence of a risk factor in a relevant cardiovascular disease model; however, this did not involve exposure to a high fat diet. High fat diet, obesity, or hyperglycemia does not necessarily induce cardiac dysfunction in mice. Although many investigators use such diabetes/obesity models to understand cardiac defects related to risk factors, this study, along with those from several other groups, serves as a cautionary note regarding the use of murine models of diabetes and obesity in the context of heart failure.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/fisiopatologia , Coração/efeitos dos fármacos , Coração/fisiopatologia , Animais , Respiração Celular/efeitos dos fármacos , Complicações do Diabetes/etiologia , Complicações do Diabetes/metabolismo , Complicações do Diabetes/patologia , Complicações do Diabetes/fisiopatologia , Gorduras na Dieta/efeitos adversos , Gorduras na Dieta/análise , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Hiperglicemia/complicações , Masculino , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Dilatação Mitocondrial/efeitos dos fármacos
10.
Int J Oncol ; 40(1): 227-35, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21922132

RESUMO

Cranberry extracts may provide beneficial health effects in the treatment of various diseases, including cancer. However, the underlying molecular mechanisms of antineoplastic properties are not understood. We report the effect of a proanthocyanidin (PAC)-rich isolate from cranberry (PAC-1) as a therapeutic agent with dual activity to target both ovarian cancer viability and angiogenesis in vitro. PAC-1 treatment of chemotherapy-resistant SKOV-3 cells blocked cell cycle progression through the G2/M phase, increased the generation of reactive oxygen species (ROS), and induced apoptosis through activation of intrinsic and extrinsic pathway components. Cytotoxicity of PAC-1 was partially based on ROS generation and could be blocked by co-treatment with antioxidant glutathione. PAC-1 reduced the cell viability of both SKOV-3 ovarian cancer cells and HUVEC endothelial cells in a dose-dependent manner and blocked the activation of the pro-survival factor AKT. Furthermore, PAC-1 blocked vascular endothelial growth factor (VEGF)-stimulated receptor phosphorylation in endothelial cells, which correlated with the inhibition of endothelial tube formation in vitro. Our findings suggest that PAC-1 exerts potent anticancer and anti-angiogenic properties and that highly purified PAC from cranberry can be further developed to treat ovarian cancer in combinational or single-agent therapy.


Assuntos
Adenocarcinoma/tratamento farmacológico , Inibidores da Angiogênese/farmacologia , Neoplasias Ovarianas/tratamento farmacológico , Proantocianidinas/farmacologia , Inibidores da Angiogênese/isolamento & purificação , Apoptose/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Feminino , Frutas/química , Fase G2/efeitos dos fármacos , Humanos , Neoplasias Ovarianas/irrigação sanguínea , Neoplasias Ovarianas/metabolismo , Fosforilação/efeitos dos fármacos , Extratos Vegetais/farmacologia , Proantocianidinas/isolamento & purificação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo , Vaccinium macrocarpon/química
11.
Cancer Biol Ther ; 11(12): 1036-45, 2011 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-21532338

RESUMO

Patients diagnosed with high-risk neuroblastoma (NB), an extracranial solid tumor in children, have metastases and low survival (30%) despite aggressive multi-modal therapy. Therefore new therapies are urgently needed. We show significant in vitro and in vivo antitumor efficacy of RKS262 in NB. RKS262 showed superior cytotoxicity (IC(50) = 6-25 µM) against six representative NB cell lines compared to its parent analog Nifurtimox (currently in phase 2). Pre-formulated RKS262 (150 mg/kg/daily) pellets administered orally, suppressed tumor growth (60%, p = 0.021) in NB xenograft mice within 28 days. RKS262-treated SMSKCNR cells showed TUNEL-positive DNA nicks and activation of ROS, MAPKs (SAPK/JNK), caspase-3, and p53, along with suppression of the IGF-1R/PI3K/PKC pathway and the Bcl2 family of proteins. RKS262 caused G(2)/M-phase arrest and suppressed cdc-2, cyclin B1, p21, and cyclin D1/D4 expression. N-acetyl-cysteine (NAC; 10 mM) pre-treatment rescued cell viability of RKS262 (23 µM)-treated SMSKCNR cells, and pre-treatment with ascorbic acid (100 µM) and a MAPK inhibitor SB203580 (20 µM) reversed SAPK/JNK, caspase-3 activation, PARP-1 cleavage, and suppression of IGF-1R, PI3K, and PKC phosphorylation. Further, treatment with exogenous BDNF (50 nM) did not suppress SAPK/JNK or ROS activation due to RKS262. Rather, BDNF (50 nM), EGF (100 nM) and IGF-1 (100 nM) co-treatment with RKS262 induced a remarkable S-phase arrest rather than a G(2)/M phase arrest when RKS262 was used alone. In summary, RKS262 shows oral efficacy in NB xenograft animals, and induces apoptosis in vitro in SMSKCNR cells via cell cycle arrest, MAPK and ROS activation, and suppression of IGF-1R/PI3K/PKC and Bcl2 family proteins in a growth factor (BDNF/EGF/IGF-1)-independent fashion.


Assuntos
Antineoplásicos/farmacologia , Cumarínicos/farmacologia , Óxidos S-Cíclicos/farmacologia , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Espécies Reativas de Oxigênio/metabolismo , Carga Tumoral/efeitos dos fármacos , Administração Oral , Animais , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Caspase 3/metabolismo , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cumarínicos/administração & dosagem , Cumarínicos/química , Óxidos S-Cíclicos/administração & dosagem , Óxidos S-Cíclicos/química , Fator de Crescimento Epidérmico/farmacologia , Feminino , Humanos , Fator de Crescimento Insulin-Like I/farmacologia , Camundongos , Camundongos Nus , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA