Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 371
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 177(4): 986-998.e15, 2019 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-30982599

RESUMO

By observing their social partners, primates learn about reward values of objects. Here, we show that monkeys' amygdala neurons derive object values from observation and use these values to simulate a partner monkey's decision process. While monkeys alternated making reward-based choices, amygdala neurons encoded object-specific values learned from observation. Dynamic activities converted these values to representations of the recorded monkey's own choices. Surprisingly, the same activity patterns unfolded spontaneously before partner's choices in separate neurons, as if these neurons simulated the partner's decision-making. These "simulation neurons" encoded signatures of mutual-inhibitory decision computation, including value comparisons and value-to-choice conversions, resulting in accurate predictions of partner's choices. Population decoding identified differential contributions of amygdala subnuclei. Biophysical modeling of amygdala circuits showed that simulation neurons emerge naturally from convergence between object-value neurons and self-other neurons. By simulating decision computations during observation, these neurons could allow primates to reconstruct their social partners' mental states.


Assuntos
Tonsila do Cerebelo/metabolismo , Tonsila do Cerebelo/fisiologia , Tomada de Decisões/fisiologia , Animais , Comportamento Animal/fisiologia , Comportamento de Escolha/fisiologia , Relações Interpessoais , Aprendizagem/fisiologia , Macaca mulatta/fisiologia , Masculino , Neurônios/metabolismo , Neurônios/fisiologia , Recompensa
2.
Proc Natl Acad Sci U S A ; 121(23): e2318641121, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38814872

RESUMO

A balanced excitation-inhibition ratio (E/I ratio) is critical for healthy brain function. Normative development of cortex-wide E/I ratio remains unknown. Here, we noninvasively estimate a putative marker of whole-cortex E/I ratio by fitting a large-scale biophysically plausible circuit model to resting-state functional MRI (fMRI) data. We first confirm that our model generates realistic brain dynamics in the Human Connectome Project. Next, we show that the estimated E/I ratio marker is sensitive to the gamma-aminobutyric acid (GABA) agonist benzodiazepine alprazolam during fMRI. Alprazolam-induced E/I changes are spatially consistent with positron emission tomography measurement of benzodiazepine receptor density. We then investigate the relationship between the E/I ratio marker and neurodevelopment. We find that the E/I ratio marker declines heterogeneously across the cerebral cortex during youth, with the greatest reduction occurring in sensorimotor systems relative to association systems. Importantly, among children with the same chronological age, a lower E/I ratio marker (especially in the association cortex) is linked to better cognitive performance. This result is replicated across North American (8.2 to 23.0 y old) and Asian (7.2 to 7.9 y old) cohorts, suggesting that a more mature E/I ratio indexes improved cognition during normative development. Overall, our findings open the door to studying how disrupted E/I trajectories may lead to cognitive dysfunction in psychopathology that emerges during youth.


Assuntos
Córtex Cerebral , Cognição , Imageamento por Ressonância Magnética , Humanos , Cognição/fisiologia , Cognição/efeitos dos fármacos , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/crescimento & desenvolvimento , Córtex Cerebral/metabolismo , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/fisiologia , Masculino , Imageamento por Ressonância Magnética/métodos , Feminino , Adolescente , Criança , Conectoma/métodos , Alprazolam/farmacologia , Receptores de GABA-A/metabolismo , Adulto Jovem
3.
Mol Psychiatry ; 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39256549

RESUMO

Depression is a multifactorial clinical syndrome with a low pharmacological treatment response rate. Therefore, identifying predictors of treatment response capable of providing the basis for future developments of individualized therapies is crucial. Here, we applied model-free and model-based measures of whole-brain turbulent dynamics in resting-state functional magnetic resonance imaging (fMRI) in healthy controls and unmedicated depressed patients. After eight weeks of treatment with selective serotonin reuptake inhibitors (SSRIs), patients were classified as responders and non-responders according to the Hamilton Depression Rating Scale 6 (HAMD6). Using the model-free approach, we found that compared to healthy controls and responder patients, non-responder patients presented disruption of the information transmission across spacetime scales. Furthermore, our results revealed that baseline turbulence level is positively correlated with beneficial pharmacological treatment outcomes. Importantly, our model-free approach enabled prediction of which patients would turn out to be non-responders. Finally, our model-based approach provides mechanistic evidence that non-responder patients are less sensitive to stimulation and, consequently, less prone to respond to treatment. Overall, we demonstrated that different levels of turbulent dynamics are suitable for predicting response to SSRIs treatment in depression.

4.
PLoS Comput Biol ; 20(5): e1011350, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38701063

RESUMO

A fundamental challenge in neuroscience is accurately defining brain states and predicting how and where to perturb the brain to force a transition. Here, we investigated resting-state fMRI data of patients suffering from disorders of consciousness (DoC) after coma (minimally conscious and unresponsive wakefulness states) and healthy controls. We applied model-free and model-based approaches to help elucidate the underlying brain mechanisms of patients with DoC. The model-free approach allowed us to characterize brain states in DoC and healthy controls as a probabilistic metastable substate (PMS) space. The PMS of each group was defined by a repertoire of unique patterns (i.e., metastable substates) with different probabilities of occurrence. In the model-based approach, we adjusted the PMS of each DoC group to a causal whole-brain model. This allowed us to explore optimal strategies for promoting transitions by applying off-line in silico probing. Furthermore, this approach enabled us to evaluate the impact of local perturbations in terms of their global effects and sensitivity to stimulation, which is a model-based biomarker providing a deeper understanding of the mechanisms underlying DoC. Our results show that transitions were obtained in a synchronous protocol, in which the somatomotor network, thalamus, precuneus and insula were the most sensitive areas to perturbation. This motivates further work to continue understanding brain function and treatments of disorders of consciousness.


Assuntos
Encéfalo , Simulação por Computador , Transtornos da Consciência , Imageamento por Ressonância Magnética , Modelos Neurológicos , Humanos , Imageamento por Ressonância Magnética/métodos , Encéfalo/fisiopatologia , Encéfalo/diagnóstico por imagem , Transtornos da Consciência/fisiopatologia , Transtornos da Consciência/diagnóstico por imagem , Masculino , Feminino , Biologia Computacional , Adulto , Pessoa de Meia-Idade , Estado de Consciência/fisiologia , Mapeamento Encefálico/métodos , Idoso
5.
PLoS Comput Biol ; 20(1): e1011818, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38241383

RESUMO

Brain signal irreversibility has been shown to be a promising approach to study neural dynamics. Nevertheless, the relation with cortical hierarchy and the influence of different electrophysiological features is not completely understood. In this study, we recorded local field potentials (LFPs) during spontaneous behavior, including awake and sleep periods, using custom micro-electrocorticographic (µECoG) arrays implanted in ferrets. In contrast to humans, ferrets remain less time in each state across the sleep-wake cycle. We deployed a diverse set of metrics in order to measure the levels of complexity of the different behavioral states. In particular, brain irreversibility, which is a signature of non-equilibrium dynamics, captured by the arrow of time of the signal, revealed the hierarchical organization of the ferret's cortex. We found different signatures of irreversibility and functional hierarchy of large-scale dynamics in three different brain states (active awake, quiet awake, and deep sleep), showing a lower level of irreversibility in the deep sleep stage, compared to the other. Irreversibility also allowed us to disentangle the influence of different cortical areas and frequency bands in this process, showing a predominance of the parietal cortex and the theta band. Furthermore, when inspecting the embedded dynamic through a Hidden Markov Model, the deep sleep stage was revealed to have a lower switching rate and lower entropy production. These results suggest functional hierarchies in organization that can be revealed through thermodynamic features and information theory metrics.


Assuntos
Encéfalo , Furões , Animais , Humanos , Encéfalo/fisiologia , Sono/fisiologia , Mapeamento Encefálico/métodos , Vigília/fisiologia
6.
Cereb Cortex ; 34(1)2024 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-37991264

RESUMO

The frontal pole is implicated in humans in whether to exploit resources versus explore alternatives. Effective connectivity, functional connectivity, and tractography were measured between six human frontal pole regions and for comparison 13 dorsolateral and dorsal prefrontal cortex regions, and the 360 cortical regions in the Human Connectome Project Multi-modal-parcellation atlas in 171 HCP participants. The frontal pole regions have effective connectivity with Dorsolateral Prefrontal Cortex regions, the Dorsal Prefrontal Cortex, both implicated in working memory; and with the orbitofrontal and anterior cingulate cortex reward/non-reward system. There is also connectivity with temporal lobe, inferior parietal, and posterior cingulate regions. Given this new connectivity evidence, and evidence from activations and damage, it is proposed that the frontal pole cortex contains autoassociation attractor networks that are normally stable in a short-term memory state, and maintain stability in the other prefrontal networks during stable exploitation of goals and strategies. However, if an input from the orbitofrontal or anterior cingulate cortex that expected reward, non-reward, or punishment is received, this destabilizes the frontal pole and thereby other prefrontal networks to enable exploration of competing alternative goals and strategies. The frontal pole connectivity with reward systems may be key in exploit versus explore.


Assuntos
Conectoma , Lobo Parietal , Humanos , Imageamento por Ressonância Magnética , Lobo Frontal/diagnóstico por imagem , Córtex Pré-Frontal/diagnóstico por imagem , Lobo Temporal
7.
Cereb Cortex ; 34(8)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39110413

RESUMO

Music is a non-verbal human language, built on logical, hierarchical structures, that offers excellent opportunities to explore how the brain processes complex spatiotemporal auditory sequences. Using the high temporal resolution of magnetoencephalography, we investigated the unfolding brain dynamics of 70 participants during the recognition of previously memorized musical sequences compared to novel sequences matched in terms of entropy and information content. Measures of both whole-brain activity and functional connectivity revealed a widespread brain network underlying the recognition of the memorized auditory sequences, which comprised primary auditory cortex, superior temporal gyrus, insula, frontal operculum, cingulate gyrus, orbitofrontal cortex, basal ganglia, thalamus, and hippocampus. Furthermore, while the auditory cortex responded mainly to the first tones of the sequences, the activity of higher-order brain areas such as the cingulate gyrus, frontal operculum, hippocampus, and orbitofrontal cortex largely increased over time during the recognition of the memorized versus novel musical sequences. In conclusion, using a wide range of analytical techniques spanning from decoding to functional connectivity and building on previous works, our study provided new insights into the spatiotemporal whole-brain mechanisms for conscious recognition of auditory sequences.


Assuntos
Percepção Auditiva , Encéfalo , Magnetoencefalografia , Música , Humanos , Masculino , Feminino , Adulto , Magnetoencefalografia/métodos , Percepção Auditiva/fisiologia , Adulto Jovem , Encéfalo/fisiologia , Reconhecimento Psicológico/fisiologia , Mapeamento Encefálico/métodos , Rede Nervosa/fisiologia , Rede Nervosa/diagnóstico por imagem , Estimulação Acústica/métodos
8.
J Neurosci ; 43(9): 1643-1656, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36732071

RESUMO

Healthy brain dynamics can be understood as the emergence of a complex system far from thermodynamic equilibrium. Brain dynamics are temporally irreversible and thus establish a preferred direction in time (i.e., arrow of time). However, little is known about how the time-reversal symmetry of spontaneous brain activity is affected by Alzheimer's disease (AD). We hypothesized that the level of irreversibility would be compromised in AD, signaling a fundamental shift in the collective properties of brain activity toward equilibrium dynamics. We investigated the irreversibility from resting-state fMRI and EEG data in male and female human patients with AD and elderly healthy control subjects (HCs). We quantified the level of irreversibility and, thus, proximity to nonequilibrium dynamics by comparing forward and backward time series through time-shifted correlations. AD was associated with a breakdown of temporal irreversibility at the global, local, and network levels, and at multiple oscillatory frequency bands. At the local level, temporoparietal and frontal regions were affected by AD. The limbic, frontoparietal, default mode, and salience networks were the most compromised at the network level. The temporal reversibility was associated with cognitive decline in AD and gray matter volume in HCs. The irreversibility of brain dynamics provided higher accuracy and more distinctive information than classical neurocognitive measures when differentiating AD from control subjects. Findings were validated using an out-of-sample cohort. Present results offer new evidence regarding pathophysiological links between the entropy generation rate of brain dynamics and the clinical presentation of AD, opening new avenues for dementia characterization at different levels.SIGNIFICANCE STATEMENT By assessing the irreversibility of large-scale dynamics across multiple brain signals, we provide a precise signature capable of distinguishing Alzheimer's disease (AD) at the global, local, and network levels and different oscillatory regimes. Irreversibility of limbic, frontoparietal, default-mode, and salience networks was the most compromised by AD compared with more sensory-motor networks. Moreover, the time-irreversibility properties associated with cognitive decline and atrophy outperformed and complemented classical neurocognitive markers of AD in predictive classification performance. Findings were generalized and replicated with an out-of-sample validation procedure. We provide novel multilevel evidence of reduced irreversibility in AD brain dynamics that has the potential to open new avenues for understating neurodegeneration in terms of the temporal asymmetry of brain dynamics.


Assuntos
Doença de Alzheimer , Humanos , Masculino , Feminino , Idoso , Encéfalo , Córtex Cerebral , Mapeamento Encefálico , Substância Cinzenta , Imageamento por Ressonância Magnética
9.
Neurobiol Dis ; 200: 106613, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39079580

RESUMO

Focal brain injuries, such as stroke, cause local structural damage as well as alteration of neuronal activity in distant brain regions. Experimental evidence suggests that one of these changes is the appearance of sleep-like slow waves in the otherwise awake individual. This pattern is prominent in areas surrounding the damaged region and can extend to connected brain regions in a way consistent with the individual's specific long-range connectivity patterns. In this paper we present a generative whole-brain model based on (f)MRI data that, in combination with the disconnection mask associated with a given patient, explains the effects of the sleep-like slow waves originated in the vicinity of the lesion area on the distant brain activity. Our model reveals new aspects of their interaction, being able to reproduce functional connectivity patterns of stroke patients and offering a detailed, causal understanding of how stroke-related effects, in particular slow waves, spread throughout the brain. The presented findings demonstrate that the model effectively captures the links between stroke occurrences, sleep-like slow waves, and their subsequent spread across the human brain.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Acidente Vascular Cerebral , Humanos , Acidente Vascular Cerebral/fisiopatologia , Encéfalo/fisiopatologia , Imageamento por Ressonância Magnética/métodos , Modelos Neurológicos , Sono/fisiologia , Sono de Ondas Lentas/fisiologia , Masculino , Feminino
10.
Nat Rev Neurosci ; 20(2): 117-127, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30552403

RESUMO

The brain is organized as a network of highly specialized networks of spiking neurons. To exploit such a modular architecture for computation, the brain has to be able to regulate the flow of spiking activity between these specialized networks. In this Opinion article, we review various prominent mechanisms that may underlie communication between neuronal networks. We show that communication between neuronal networks can be understood as trajectories in a two-dimensional state space, spanned by the properties of the input. Thus, we propose a common framework to understand neuronal communication mediated by seemingly different mechanisms. We also suggest that the nesting of slow (for example, alpha-band and theta-band) oscillations and fast (gamma-band) oscillations can serve as an important control mechanism that allows or prevents spiking signals to be routed between specific networks. We argue that slow oscillations can modulate the time required to establish network resonance or entrainment and, thereby, regulate communication between neuronal networks.


Assuntos
Rede Nervosa/fisiologia , Potenciais de Ação , Animais , Comunicação Celular , Humanos , Modelos Neurológicos , Neurônios/fisiologia , Transmissão Sináptica/fisiologia
11.
PLoS Comput Biol ; 19(4): e1010781, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37043504

RESUMO

Spatiotemporal oscillations underlie all cognitive brain functions. Large-scale brain models, constrained by neuroimaging data, aim to trace the principles underlying such macroscopic neural activity from the intricate and multi-scale structure of the brain. Despite substantial progress in the field, many aspects about the mechanisms behind the onset of spatiotemporal neural dynamics are still unknown. In this work we establish a simple framework for the emergence of complex brain dynamics, including high-dimensional chaos and travelling waves. The model consists of a complex network of 90 brain regions, whose structural connectivity is obtained from tractography data. The activity of each brain area is governed by a Jansen neural mass model and we normalize the total input received by each node so it amounts the same across all brain areas. This assumption allows for the existence of an homogeneous invariant manifold, i.e., a set of different stationary and oscillatory states in which all nodes behave identically. Stability analysis of these homogeneous solutions unveils a transverse instability of the synchronized state, which gives rise to different types of spatiotemporal dynamics, such as chaotic alpha activity. Additionally, we illustrate the ubiquity of this route towards complex spatiotemporal activity in a network of next generation neural mass models. Altogehter, our results unveil the bifurcation landscape that underlies the emergence of function from structure in the brain.


Assuntos
Encéfalo , Modelos Neurológicos , Neuroimagem
12.
PLoS Comput Biol ; 19(2): e1010811, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36735751

RESUMO

A topic of growing interest in computational neuroscience is the discovery of fundamental principles underlying global dynamics and the self-organization of the brain. In particular, the notion that the brain operates near criticality has gained considerable support, and recent work has shown that the dynamics of different brain states may be modeled by pairwise maximum entropy Ising models at various distances from a phase transition, i.e., from criticality. Here we aim to characterize two brain states (psychedelics-induced and placebo) as captured by functional magnetic resonance imaging (fMRI), with features derived from the Ising spin model formalism (system temperature, critical point, susceptibility) and from algorithmic complexity. We hypothesized, along the lines of the entropic brain hypothesis, that psychedelics drive brain dynamics into a more disordered state at a higher Ising temperature and increased complexity. We analyze resting state blood-oxygen-level-dependent (BOLD) fMRI data collected in an earlier study from fifteen subjects in a control condition (placebo) and during ingestion of lysergic acid diethylamide (LSD). Working with the automated anatomical labeling (AAL) brain parcellation, we first create "archetype" Ising models representative of the entire dataset (global) and of the data in each condition. Remarkably, we find that such archetypes exhibit a strong correlation with an average structural connectome template obtained from dMRI (r = 0.6). We compare the archetypes from the two conditions and find that the Ising connectivity in the LSD condition is lower than in the placebo one, especially in homotopic links (interhemispheric connectivity), reflecting a significant decrease of homotopic functional connectivity in the LSD condition. The global archetype is then personalized for each individual and condition by adjusting the system temperature. The resulting temperatures are all near but above the critical point of the model in the paramagnetic (disordered) phase. The individualized Ising temperatures are higher in the LSD condition than in the placebo condition (p = 9 × 10-5). Next, we estimate the Lempel-Ziv-Welch (LZW) complexity of the binarized BOLD data and the synthetic data generated with the individualized model using the Metropolis algorithm for each participant and condition. The LZW complexity computed from experimental data reveals a weak statistical relationship with condition (p = 0.04 one-tailed Wilcoxon test) and none with Ising temperature (r(13) = 0.13, p = 0.65), presumably because of the limited length of the BOLD time series. Similarly, we explore complexity using the block decomposition method (BDM), a more advanced method for estimating algorithmic complexity. The BDM complexity of the experimental data displays a significant correlation with Ising temperature (r(13) = 0.56, p = 0.03) and a weak but significant correlation with condition (p = 0.04, one-tailed Wilcoxon test). This study suggests that the effects of LSD increase the complexity of brain dynamics by loosening interhemispheric connectivity-especially homotopic links. In agreement with earlier work using the Ising formalism with BOLD data, we find the brain state in the placebo condition is already above the critical point, with LSD resulting in a shift further away from criticality into a more disordered state.


Assuntos
Alucinógenos , Humanos , Alucinógenos/farmacologia , Dietilamida do Ácido Lisérgico/farmacologia , Temperatura , Encéfalo , Imageamento por Ressonância Magnética/métodos
13.
Cereb Cortex ; 33(20): 10686-10701, 2023 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-37689834

RESUMO

The hierarchical organization between 25 ventral stream visual cortical regions and 180 cortical regions was measured with magnetoencephalography using the Human Connectome Project Multimodal Parcellation atlas in 83 Human Connectome Project participants performing a visual memory task. The aim was to reveal the hierarchical organization using a whole-brain model based on generative effective connectivity with this fast neuroimaging method. V1-V4 formed a first group of interconnected regions. Especially V4 had connectivity to a ventrolateral visual stream: V8, the fusiform face cortex, and posterior inferior temporal cortex PIT. These regions in turn had effectivity connectivity to inferior temporal cortex visual regions TE2p and TE1p. TE2p and TE1p then have connectivity to anterior temporal lobe regions TE1a, TE1m, TE2a, and TGv, which are multimodal. In a ventromedial visual stream, V1-V4 connect to ventromedial regions VMV1-3 and VVC. VMV1-3 and VVC connect to the medial parahippocampal gyrus PHA1-3, which, with the VMV regions, include the parahippocampal scene area. The medial parahippocampal PHA1-3 regions have connectivity to the hippocampal system regions the perirhinal cortex, entorhinal cortex, and hippocampus. These effective connectivities of two ventral visual cortical streams measured with magnetoencephalography provide support to the hierarchical organization of brain systems measured with fMRI, and new evidence on directionality.


Assuntos
Magnetoencefalografia , Lobo Temporal , Humanos , Lobo Temporal/diagnóstico por imagem , Hipocampo , Giro Para-Hipocampal , Córtex Entorrinal , Imageamento por Ressonância Magnética
14.
Cereb Cortex ; 33(8): 4939-4963, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36227217

RESUMO

Effective connectivity, functional connectivity, and tractography were measured between 57 cortical frontal and somatosensory regions and the 360 cortical regions in the Human Connectome Project (HCP) multimodal parcellation atlas for 171 HCP participants. A ventral somatosensory stream connects from 3b and 3a via 1 and 2 and then via opercular and frontal opercular regions to the insula, which then connects to inferior parietal PF regions. This stream is implicated in "what"-related somatosensory processing of objects and of the body and in combining with visual inputs in PF. A dorsal "action" somatosensory stream connects from 3b and 3a via 1 and 2 to parietal area 5 and then 7. Inferior prefrontal regions have connectivity with the inferior temporal visual cortex and orbitofrontal cortex, are implicated in working memory for "what" processing streams, and provide connectivity to language systems, including 44, 45, 47l, TPOJ1, and superior temporal visual area. The dorsolateral prefrontal cortex regions that include area 46 have connectivity with parietal area 7 and somatosensory inferior parietal regions and are implicated in working memory for actions and planning. The dorsal prefrontal regions, including 8Ad and 8Av, have connectivity with visual regions of the inferior parietal cortex, including PGs and PGi, and are implicated in visual and auditory top-down attention.


Assuntos
Córtex Motor , Humanos , Imageamento por Ressonância Magnética , Córtex Somatossensorial/diagnóstico por imagem , Córtex Pré-Frontal/diagnóstico por imagem , Lobo Parietal
15.
Cereb Cortex ; 33(10): 6207-6227, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-36573464

RESUMO

To understand auditory cortical processing, the effective connectivity between 15 auditory cortical regions and 360 cortical regions was measured in 171 Human Connectome Project participants, and complemented with functional connectivity and diffusion tractography. 1. A hierarchy of auditory cortical processing was identified from Core regions (including A1) to Belt regions LBelt, MBelt, and 52; then to PBelt; and then to HCP A4. 2. A4 has connectivity to anterior temporal lobe TA2, and to HCP A5, which connects to dorsal-bank superior temporal sulcus (STS) regions STGa, STSda, and STSdp. These STS regions also receive visual inputs about moving faces and objects, which are combined with auditory information to help implement multimodal object identification, such as who is speaking, and what is being said. Consistent with this being a "what" ventral auditory stream, these STS regions then have effective connectivity to TPOJ1, STV, PSL, TGv, TGd, and PGi, which are language-related semantic regions connecting to Broca's area, especially BA45. 3. A4 and A5 also have effective connectivity to MT and MST, which connect to superior parietal regions forming a dorsal auditory "where" stream involved in actions in space. Connections of PBelt, A4, and A5 with BA44 may form a language-related dorsal stream.


Assuntos
Córtex Auditivo , Humanos , Córtex Auditivo/diagnóstico por imagem , Lobo Temporal , Lobo Parietal , Semântica , Idioma
16.
Cereb Cortex ; 33(7): 3319-3349, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-35834308

RESUMO

The effective connectivity between 55 visual cortical regions and 360 cortical regions was measured in 171 HCP participants using the HCP-MMP atlas, and complemented with functional connectivity and diffusion tractography. A Ventrolateral Visual "What" Stream for object and face recognition projects hierarchically to the inferior temporal visual cortex, which projects to the orbitofrontal cortex for reward value and emotion, and to the hippocampal memory system. A Ventromedial Visual "Where" Stream for scene representations connects to the parahippocampal gyrus and hippocampus. An Inferior STS (superior temporal sulcus) cortex Semantic Stream receives from the Ventrolateral Visual Stream, from visual inferior parietal PGi, and from the ventromedial-prefrontal reward system and connects to language systems. A Dorsal Visual Stream connects via V2 and V3A to MT+ Complex regions (including MT and MST), which connect to intraparietal regions (including LIP, VIP and MIP) involved in visual motion and actions in space. It performs coordinate transforms for idiothetic update of Ventromedial Stream scene representations. A Superior STS cortex Semantic Stream receives visual inputs from the Inferior STS Visual Stream, PGi, and STV, and auditory inputs from A5, is activated by face expression, motion and vocalization, and is important in social behaviour, and connects to language systems.


Assuntos
Córtex Visual , Vias Visuais , Humanos , Vias Visuais/diagnóstico por imagem , Lobo Temporal , Hipocampo , Córtex Pré-Frontal , Lobo Parietal , Mapeamento Encefálico
17.
Cereb Cortex ; 33(6): 3142-3170, 2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35834902

RESUMO

The effective connectivity between 21 regions in the human posterior parietal cortex, and 360 cortical regions was measured in 171 Human Connectome Project (HCP) participants using the HCP atlas, and complemented with functional connectivity and diffusion tractography. Intraparietal areas LIP, VIP, MIP, and AIP have connectivity from early cortical visual regions, and to visuomotor regions such as the frontal eye fields, consistent with functions in eye saccades and tracking. Five superior parietal area 7 regions receive from similar areas and from the intraparietal areas, but also receive somatosensory inputs and connect with premotor areas including area 6, consistent with functions in performing actions to reach for, grasp, and manipulate objects. In the anterior inferior parietal cortex, PFop, PFt, and PFcm are mainly somatosensory, and PF in addition receives visuo-motor and visual object information, and is implicated in multimodal shape and body image representations. In the posterior inferior parietal cortex, PFm and PGs combine visuo-motor, visual object, and reward input and connect with the hippocampal system. PGi in addition provides a route to motion-related superior temporal sulcus regions involved in social interactions. PGp has connectivity with intraparietal regions involved in coordinate transforms and may be involved in idiothetic update of hippocampal visual scene representations.


Assuntos
Conectoma , Córtex Motor , Humanos , Lobo Parietal/diagnóstico por imagem , Lobo Temporal , Córtex Somatossensorial
18.
Cereb Cortex ; 33(13): 8101-8109, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37083266

RESUMO

The developing brain has to adapt to environmental and intrinsic insults after extremely preterm (EPT) birth. Ongoing maturational processes maximize their fit to the environment and this can provide a substrate for neurodevelopmental failures. Resting-state functional magnetic resonance imaging was used to scan 33 children born EPT, at < 27 weeks of gestational age, and 26 full-term controls at 10 years of age. We studied the capability of a brain area to propagate neural information (intrinsic ignition) and its variability across time (node-metastability). This framework was computed for the dorsal attention network (DAN), frontoparietal, default-mode network (DMN), and the salience, limbic, visual, and somatosensory networks. The EPT group showed reduced intrinsic ignition in the DMN and DAN, compared with the controls, and reduced node-metastability in the DMN, DAN, and salience networks. Intrinsic ignition and node-metastability values correlated with cognitive performance at 12 years of age in both groups, but only survived in the term group after adjustment. Preterm birth disturbed the signatures of functional brain organization at rest in 3 core high-order networks: DMN, salience, and DAN. Identifying vulnerable resting-state networks after EPT birth may lead to interventions that aim to rebalance brain function.


Assuntos
Encéfalo , Lactente Extremamente Prematuro , Rede Nervosa , Vias Neurais , Descanso , Criança , Feminino , Humanos , Recém-Nascido , Masculino , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Mapeamento Encefálico , Idade Gestacional , Lactente Extremamente Prematuro/crescimento & desenvolvimento , Lactente Extremamente Prematuro/fisiologia , Imageamento por Ressonância Magnética , Rede Nervosa/diagnóstico por imagem , Vias Neurais/diagnóstico por imagem , Cognição
19.
Cereb Cortex ; 33(12): 7642-7658, 2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-36929009

RESUMO

Schizophrenia is a debilitating neuropsychiatric disorder whose underlying correlates remain unclear despite decades of neuroimaging investigation. One contentious topic concerns the role of global signal (GS) fluctuations and how they affect more focal functional changes. Moreover, it has been difficult to pinpoint causal mechanisms of circuit disruption. Here, we analyzed resting-state fMRI data from 47 schizophrenia patients and 118 age-matched healthy controls and used dynamical analyses to investigate how global fluctuations and other functional metastable states are affected by this disorder. We found that brain dynamics in the schizophrenia group were characterized by an increased probability of globally coherent states and reduced recurrence of a substate dominated by coupled activity in the default mode and limbic networks. We then used the in silico perturbation of a whole-brain model to identify critical areas involved in the disease. Perturbing a set of temporo-parietal sensory and associative areas in a model of the healthy brain reproduced global pathological dynamics. Healthy brain dynamics were instead restored by perturbing a set of medial fronto-temporal and cingulate regions in the model of pathology. These results highlight the relevance of GS alterations in schizophrenia and identify a set of vulnerable areas involved in determining a shift in brain state.


Assuntos
Esquizofrenia , Humanos , Encéfalo , Mapeamento Encefálico , Giro do Cíngulo , Neuroimagem Funcional/métodos , Imageamento por Ressonância Magnética/métodos
20.
Cereb Cortex ; 33(5): 1856-1865, 2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-35512291

RESUMO

Dissipative systems evolve in the preferred temporal direction indicated by the thermodynamic arrow of time. The fundamental nature of this temporal asymmetry led us to hypothesize its presence in the neural activity evoked by conscious perception of the physical world, and thus its covariance with the level of conscious awareness. We implemented a data-driven deep learning framework to decode the temporal inversion of electrocorticography signals acquired from non-human primates. Brain activity time series recorded during conscious wakefulness could be distinguished from their inverted counterparts with high accuracy, both using frequency and phase information. However, classification accuracy was reduced for data acquired during deep sleep and under ketamine-induced anesthesia; moreover, the predictions obtained from multiple independent neural networks were less consistent for sleep and anesthesia than for conscious wakefulness. Finally, the analysis of feature importance scores highlighted transitions between slow ($\approx$20 Hz) and fast frequencies (>40 Hz) as the main contributors to the temporal asymmetry observed during conscious wakefulness. Our results show that a preferred temporal direction is manifest in the neural activity evoked by conscious mentation and in the phenomenology of the passage of time, establishing common ground to tackle the relationship between brain and subjective experience.


Assuntos
Estado de Consciência , Ketamina , Animais , Estado de Consciência/fisiologia , Vigília/fisiologia , Eletrocorticografia , Sono/fisiologia , Ketamina/farmacologia , Encéfalo/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA