Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 169(6): 1029-1041.e16, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28575667

RESUMO

We report a noninvasive strategy for electrically stimulating neurons at depth. By delivering to the brain multiple electric fields at frequencies too high to recruit neural firing, but which differ by a frequency within the dynamic range of neural firing, we can electrically stimulate neurons throughout a region where interference between the multiple fields results in a prominent electric field envelope modulated at the difference frequency. We validated this temporal interference (TI) concept via modeling and physics experiments, and verified that neurons in the living mouse brain could follow the electric field envelope. We demonstrate the utility of TI stimulation by stimulating neurons in the hippocampus of living mice without recruiting neurons of the overlying cortex. Finally, we show that by altering the currents delivered to a set of immobile electrodes, we can steerably evoke different motor patterns in living mice.


Assuntos
Estimulação Encefálica Profunda/métodos , Estimulação Transcraniana por Corrente Contínua/métodos , Animais , Estimulação Encefálica Profunda/efeitos adversos , Estimulação Encefálica Profunda/instrumentação , Eletrodos , Hipocampo/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/fisiologia , Estimulação Transcraniana por Corrente Contínua/efeitos adversos , Estimulação Transcraniana por Corrente Contínua/instrumentação
2.
Diabetes Obes Metab ; 26(6): 2466-2475, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38533552

RESUMO

BACKGROUND: Metabolic syndrome (MetS), which can be induced or exacerbated by the current class of antipsychotic drugs, is highly prevalent in patients with schizophrenia and presents significant challenges to lifetime disease management. Supported by initial clinical results, trace amine-associated receptor 1 (TAAR1) agonists have emerged as potential novel treatments for schizophrenia. Notably, non-clinical studies have also shown weight-lowering and glucoregulatory effects of TAAR1 agonists, including the investigational agent ulotaront. However, the translatability of these findings to humans has not been adequately assessed. Given that delayed gastric emptying (GE) was identified as a potential mechanism contributing to the metabolic benefits of TAAR1 agonists in rodents, the aim of this study was to evaluate the effect of ulotaront on GE in patients with schizophrenia and concurrent MetS with prediabetes. METHODS: Patients with schizophrenia were randomized to receive a single oral dose of ulotaront (150 mg) and their previous antipsychotic (PA) in an open-label, crossover, two-sequence design (NCT05402111). Eligible participants fulfilled at least three of five MetS criteria and had prediabetes defined by elevated glycated haemoglobin (5.7-6.4%) and/or fasting homeostatic model assessment of insulin resistance (i.e. ≥2.22). Following an overnight fast and 4 h post-dose, participants ingested a 99mTc-sulphur colloid radiolabelled egg meal (320 kcal, 30% fat). GE was measured by scintigraphy over 4 h. Endpoints included GE of solids half-time (T1/2) and percentage gastric retention at 1, 2 and 4 h. RESULTS: Thirty-one adults were randomized and 27 completed the study. Ulotaront significantly delayed GE of solids [median GE T1/2 ulotaront at 139 min (119, 182) vs. the participant's PA of 124 min (109, 132), p = .006]. A significant increase in gastric retention was seen in the ulotaront versus the PA group at 1 h (80% vs. 75%, p = .015), 2 h (61% vs. 50%, p = .023) and 4 h (17% vs. 7%, p = .002) post-meal. CONCLUSION: Ulotaront delayed the GE of solids in patients with schizophrenia and concurrent MetS with prediabetes. Additional studies are needed to assess whether treatment with TAAR1 agonists is associated with weight loss and glucoregulatory improvement.


Assuntos
Antipsicóticos , Estudos Cross-Over , Esvaziamento Gástrico , Síndrome Metabólica , Naltrexona/análogos & derivados , Estado Pré-Diabético , Receptores Acoplados a Proteínas G , Esquizofrenia , Humanos , Esvaziamento Gástrico/efeitos dos fármacos , Masculino , Feminino , Esquizofrenia/tratamento farmacológico , Esquizofrenia/complicações , Adulto , Pessoa de Meia-Idade , Síndrome Metabólica/complicações , Síndrome Metabólica/tratamento farmacológico , Estado Pré-Diabético/complicações , Estado Pré-Diabético/tratamento farmacológico , Antipsicóticos/uso terapêutico , Antipsicóticos/efeitos adversos , Receptores Acoplados a Proteínas G/agonistas , Tetra-Hidronaftalenos/uso terapêutico , Tetra-Hidronaftalenos/farmacologia
3.
Eur Arch Psychiatry Clin Neurosci ; 273(7): 1543-1556, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37165101

RESUMO

Ulotaront is a trace amine-associated receptor 1 (TAAR1) agonist in Phase 3 clinical development for the treatment of schizophrenia. Ulotaront was discovered through a unique, target-agnostic approach optimized to identify drug candidates lacking D2 and 5-HT2A receptor antagonism, while demonstrating an antipsychotic-like phenotypic profile in vivo. The mechanism of action (MOA) of ulotaront is thought to be mediated by agonism at TAAR1 and serotonin 5-HT1A receptors. Ulotaront has completed two Phase 2 trials (4-week acute study and 26-week open-label extension) which led to Breakthrough Therapy Designation from the US Food and Drug Administration for the treatment of schizophrenia. In the double-blind, placebo-controlled, acute study, ulotaront was associated with significant (p < 0.001) improvement in Positive and Negative Syndrome Scale (PANSS) total score (effect size [ES]: 0.45), with improvements vs. placebo also observed across secondary endpoints. Post-hoc analyses of the acute trial revealed additional evidence to support the effect of ulotaront on negative symptoms. In the 4-week study, ulotaront was well-tolerated, with an incidence of adverse events (AEs) numerically lower compared to placebo (45.8% vs. 50.4%; with a number needed to harm [NNH] for individual ulotaront AEs all > 40). The open-label extension demonstrated further improvement across schizophrenia symptoms and confirmed the tolerability of ulotaront, with a 6-month completion rate of 67%. Based on current data, ulotaront shows potential to be a first-in-class TAAR1 agonist for the treatment of schizophrenia with a safety and efficacy profile distinct from current antipsychotics.


Assuntos
Antipsicóticos , Esquizofrenia , Estados Unidos , Humanos , Esquizofrenia/diagnóstico , Resultado do Tratamento , Antipsicóticos/efeitos adversos , Ensaios Clínicos Controlados Aleatórios como Assunto
4.
Mol Psychiatry ; 26(6): 2562-2576, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32382134

RESUMO

Patients with schizophrenia show increased striatal dopamine synthesis capacity in imaging studies. The mechanism underlying this is unclear but may be due to N-methyl-D-aspartate receptor (NMDAR) hypofunction and parvalbumin (PV) neuronal dysfunction leading to disinhibition of mesostriatal dopamine neurons. Here, we develop a translational mouse model of the dopamine pathophysiology seen in schizophrenia and test approaches to reverse the dopamine changes. Mice were treated with sub-chronic ketamine (30 mg/kg) or saline and then received in vivo positron emission tomography of striatal dopamine synthesis capacity, analogous to measures used in patients. Locomotor activity was measured using the open-field test. In vivo cell-type-specific chemogenetic approaches and pharmacological interventions were used to manipulate neuronal excitability. Immunohistochemistry and RNA sequencing were used to investigate molecular mechanisms. Sub-chronic ketamine increased striatal dopamine synthesis capacity (Cohen's d = 2.5) and locomotor activity. These effects were countered by inhibition of midbrain dopamine neurons, and by activation of PV interneurons in pre-limbic cortex and ventral subiculum of the hippocampus. Sub-chronic ketamine reduced PV expression in these cortical and hippocampal regions. Pharmacological intervention with SEP-363856, a novel psychotropic agent with agonism at trace amine receptor 1 (TAAR1) and 5-HT1A receptors but no appreciable action at dopamine D2 receptors, significantly reduced the ketamine-induced increase in dopamine synthesis capacity. These results show that sub-chronic ketamine treatment in mice mimics the dopaminergic alterations in patients with psychosis, that this requires activation of midbrain dopamine neurons, and can be ameliorated by activating PV interneurons and by a TAAR1/5-HT1A agonist. This identifies novel therapeutic approaches for targeting presynaptic dopamine dysfunction in patients with schizophrenia and effects of ketamine relevant to its therapeutic use for  treating major depression.


Assuntos
Ketamina , Esquizofrenia , Animais , Dopamina , Humanos , Ketamina/farmacologia , Camundongos , Piranos , Receptores de N-Metil-D-Aspartato , Esquizofrenia/tratamento farmacológico
5.
Pharm Res ; 39(5): 837-850, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35484370

RESUMO

PURPOSE: Ulotaront (SEP-363856) is a TAAR1 agonist with 5-HT1A agonist activity currently in clinical development for the treatment of schizophrenia. The objectives of the current study were to characterize the in vitro ADME properties, preclinical PK, and to evaluate the DDI potential of ulotaront and its major metabolite SEP-383103. METHODS: Solubility, permeability, plasma protein binding, CYP inhibition and induction, transporter inhibition and uptake studies were conducted in vitro. Phenotyping studies were conducted using recombinant human CYPs and FMOs, human liver microsomes and human liver homogenates. Preclinical plasma and brain pharmacokinetics were determined after a single intraperitoneal, intravenous, and oral administration of ulotaront. RESULTS: Ulotaront is a compound of high solubility, high permeability, and low binding to plasma proteins. Ulotaront metabolism is mediated via both NADPH-dependent and NADPH-independent pathways, with CYP2D6 as the major metabolizing enzyme. Ulotaront is an inducer of CYP2B6, and an inhibitor of CYP2D6, OCT1 and OCT2, while SEP-383103 is neither a CYP inducer nor a potent inhibitor of CYPs and human transporters. Ulotaront exhibits rapid absorption, greater than 70% bioavailability, approximately 3.5 L/kg volume of distribution, 1.5-4 h half-life, 12-43 ml/min/kg clearance, and good penetration across the blood-brain barrier in preclinical species. CONCLUSIONS: Ulotaront has been designated as a BCS1 compound by US FDA. The ability of ulotaront to penetrate the blood-brain barrier for CNS targeting has been demonstrated in mice and rats. The potential for ulotaront and SEP-383103 to act as perpetrators of CYP and transporter-mediated DDIs is predicted to be remote.


Assuntos
Receptor 5-HT1A de Serotonina , Esquizofrenia , Animais , Citocromo P-450 CYP2D6/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Camundongos , Microssomos Hepáticos/metabolismo , NADP/metabolismo , NADP/farmacologia , Preparações Farmacêuticas/metabolismo , Ratos , Receptor 5-HT1A de Serotonina/metabolismo , Esquizofrenia/tratamento farmacológico
6.
Int J Mol Sci ; 22(24)2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34947997

RESUMO

Trace amine-associated receptor 1 (TAAR1) has emerged as a promising therapeutic target for neuropsychiatric disorders due to its ability to modulate monoaminergic and glutamatergic neurotransmission. In particular, agonist compounds have generated interest as potential treatments for schizophrenia and other psychoses due to TAAR1-mediated regulation of dopaminergic tone. Here, we review unmet needs in schizophrenia, the current state of knowledge in TAAR1 circuit biology and neuropharmacology, including preclinical behavioral, imaging, and cellular evidence in glutamatergic, dopaminergic and genetic models linked to the pathophysiology of psychotic, negative and cognitive symptoms. Clinical trial data for TAAR1 drug candidates are reviewed and contrasted with antipsychotics. The identification of endogenous TAAR1 ligands and subsequent development of small-molecule agonists has revealed antipsychotic-, anxiolytic-, and antidepressant-like properties, as well as pro-cognitive and REM-sleep suppressing effects of TAAR1 activation in rodents and non-human primates. Ulotaront, the first TAAR1 agonist to progress to randomized controlled clinical trials, has demonstrated efficacy in the treatment of schizophrenia, while another, ralmitaront, is currently being evaluated in clinical trials in schizophrenia. Coupled with the preclinical findings, this provides a rationale for further investigation and development of this new pharmacological class for the treatment of schizophrenia and other psychiatric disorders.


Assuntos
Antipsicóticos/uso terapêutico , Receptores Acoplados a Proteínas G/metabolismo , Esquizofrenia/tratamento farmacológico , Bibliotecas de Moléculas Pequenas/uso terapêutico , Animais , Antipsicóticos/farmacologia , Ensaios Clínicos como Assunto , Modelos Animais de Doenças , Dopamina/metabolismo , Ácido Glutâmico/metabolismo , Humanos , Receptores Acoplados a Proteínas G/agonistas , Esquizofrenia/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia
7.
J Pharmacol Exp Ther ; 371(1): 1-14, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31371483

RESUMO

For the past 50 years, the clinical efficacy of antipsychotic medications has relied on blockade of dopamine D2 receptors. Drug development of non-D2 compounds, seeking to avoid the limiting side effects of dopamine receptor blockade, has failed to date to yield new medicines for patients. In this work, we report the discovery of SEP-363856 (SEP-856), a novel psychotropic agent with a unique mechanism of action. SEP-856 was discovered in a medicinal chemistry effort utilizing a high throughput, high content, mouse-behavior phenotyping platform, in combination with in vitro screening, aimed at developing non-D2 (anti-target) compounds that could nevertheless retain efficacy across multiple animal models sensitive to D2-based pharmacological mechanisms. SEP-856 demonstrated broad efficacy in putative rodent models relating to aspects of schizophrenia, including phencyclidine (PCP)-induced hyperactivity, prepulse inhibition, and PCP-induced deficits in social interaction. In addition to its favorable pharmacokinetic properties, lack of D2 receptor occupancy, and the absence of catalepsy, SEP-856's broad profile was further highlighted by its robust suppression of rapid eye movement sleep in rats. Although the mechanism of action has not been fully elucidated, in vitro and in vivo pharmacology data as well as slice and in vivo electrophysiology recordings suggest that agonism at both trace amine-associated receptor 1 and 5-HT1A receptors is integral to its efficacy. Based on the preclinical data and its unique mechanism of action, SEP-856 is a promising new agent for the treatment of schizophrenia and represents a new pharmacological class expected to lack the side effects stemming from blockade of D2 signaling. SIGNIFICANCE STATEMENT: Since the discovery of chlorpromazine in the 1950s, the clinical efficacy of antipsychotic medications has relied on blockade of dopamine D2 receptors, which is associated with substantial side effects and little to no efficacy in treating the negative and cognitive symptoms of schizophrenia. In this study, we describe the discovery and pharmacology of SEP-363856, a novel psychotropic agent that does not exert its antipsychotic-like effects through direct interaction with D2 receptors. Although the mechanism of action has not been fully elucidated, our data suggest that agonism at both trace amine-associated receptor 1 and 5-HT1A receptors is integral to its efficacy. Based on its unique profile in preclinical species, SEP-363856 represents a promising candidate for the treatment of schizophrenia and potentially other neuropsychiatric disorders.


Assuntos
Psicotrópicos/farmacologia , Piranos/farmacologia , Esquizofrenia/tratamento farmacológico , Animais , Excitabilidade Cortical/efeitos dos fármacos , Alucinógenos/toxicidade , Macaca mulatta , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fenciclidina/toxicidade , Psicotrópicos/uso terapêutico , Piranos/química , Piranos/uso terapêutico , Ratos , Ratos Sprague-Dawley , Receptor 5-HT1A de Serotonina/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Esquizofrenia/etiologia , Agonistas do Receptor 5-HT1 de Serotonina/farmacologia , Agonistas do Receptor 5-HT1 de Serotonina/uso terapêutico , Sono REM/efeitos dos fármacos
8.
J Neurosci ; 37(48): 11688-11700, 2017 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-29079688

RESUMO

A single nucleotide polymorphism substitution from glutamine (Gln, Q) to arginine (Arg, R) at codon 460 of the purinergic P2X7 receptor (P2X7R) has repeatedly been associated with mood disorders. The P2X7R-Gln460Arg variant per se is not compromised in its function. However, heterologous expression of P2X7R-Gln460Arg together with wild-type P2X7R has recently been demonstrated to impair receptor function. Here we show that this also applies to humanized mice coexpressing both human P2X7R variants. Primary hippocampal cells derived from heterozygous mice showed an attenuated calcium uptake upon agonist stimulation. While humanized mice were unaffected in their behavioral repertoire under basal housing conditions, mice that harbor both P2X7R variants showed alterations in their sleep quality resembling signs of a prodromal disease stage. Also healthy heterozygous human subjects showed mild changes in sleep parameters. These results indicate that heterozygosity for the wild-type P2X7R and its mood disorder-associated variant P2X7R-Gln460Arg represents a genetic risk factor, which is potentially able to convey susceptibility to mood disorders.SIGNIFICANCE STATEMENT Depression and bipolar disorder are the most common mood disorders. The P2X7 receptor (P2X7R) regulates many cellular functions. Its polymorphic variant Gln460Arg has repeatedly been associated with mood disorders. Genetically engineered mice, with human P2X7R, revealed that heterozygous mice (i.e., they coexpress the disease-associated Gln460Arg variant together with its normal version) have impaired receptor function and showed sleep disturbances. Human participants with the heterozygote genotype also had subtle alterations in their sleep profile. Our findings suggest that altered P2X7R function in heterozygote individuals disturbs sleep and might increase the risk for developing mood disorders.


Assuntos
Variação Genética/genética , Heterozigoto , Transtornos do Humor/genética , Receptores Purinérgicos P2X7/genética , Sono/genética , Animais , Arginina/genética , Células Cultivadas , Glutamina/genética , Hipocampo/fisiologia , Humanos , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
9.
Neuroimage ; 169: 374-382, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29277401

RESUMO

Manganese-enhanced magnetic resonance imaging (MEMRI) exploits the biophysical similarity of Ca2+ and Mn2+ to map the brain's activity in vivo. However, to what extent different Ca2+ channels contribute to the enhanced signal that MEMRI provides and how Mn2+ dynamics influence Mn2+ brain accumulation after systemic administration of MnCl2 are not yet fully understood. Here, we demonstrate that mice lacking the L-type Ca2+ channel 1.2 (Cav1.2) in the CNS show approximately 50% less increase in MEMRI contrast after repeated systemic MnCl2 injections, as compared to control mice. In contrast, genetic deletion of L-type Ca2+ channel 1.3 (Cav1.3) did not reduce signal. Brain structure- or cell type-specific deletion of Cav1.2 in combination with voxel-wise MEMRI analysis revealed a preferential accumulation of Mn2+ in projection terminals, which was confirmed by local MnCl2 administration to defined brain areas. Taken together, we provide unequivocal evidence that Cav1.2 represents an important channel for neuronal Mn2+ influx after systemic injections. We also show that after neuronal uptake, Mn2+ preferentially accumulates in projection terminals.


Assuntos
Encéfalo , Canais de Cálcio Tipo L/metabolismo , Cloretos/administração & dosagem , Aumento da Imagem/métodos , Imageamento por Ressonância Magnética/métodos , Compostos de Manganês/administração & dosagem , Manganês/metabolismo , Neurônios/metabolismo , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Tálamo/diagnóstico por imagem , Tálamo/efeitos dos fármacos , Tálamo/metabolismo
10.
Purinergic Signal ; 13(2): 153-170, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-27858314

RESUMO

The purinergic P2X7 receptor (P2X7R) has attracted considerable interest as a potential target for various central nervous system (CNS) pathologies including affective and neurodegenerative disorders. To date, the distribution and cellular localization of the P2X7R in the brain are not fully resolved and a matter of debate mainly due to the limitations of existing tools. However, this knowledge should be a prerequisite for understanding the contribution of the P2X7R to brain disease. Here, we generated a genetic mouse model by humanizing the P2X7R in the mouse as mammalian model organism. We demonstrated its functionality and revealed species-specific characteristics of the humanized receptor, compared to the murine ortholog, regarding its receptivity to activation and modulation by 2',3'-O-(benzoyl-4-benzoyl)-adenosine 5'-triphosphate (BzATP) and trifluoperazine (TFP). This humanized P2rx7 allele is accessible to spatially and temporally controlled Cre recombinase-mediated inactivation. In contrast to previously generated knockout (KO) mice, none of the described P2rx7 splice variants evade this null allele. By selective disruption and assessment of human P2RX7 expression in different brain regions and cell types, we were able to demonstrate that the P2X7R is specifically expressed in glutamatergic pyramidal neurons of the hippocampus. Also, P2X7R is expressed in major non-neuronal lineages throughout the brain, i.e., astrocytes, oligodendrocytes, and microglia. In conclusion, this humanized mouse model provides the means for detailed assessment of human P2X7R function in vivo including evaluation of agonists or antagonists. In addition, this conditional allele will enable future loss-of-function studies in conjunction with mouse models for CNS disorders.


Assuntos
Encéfalo/metabolismo , Modelos Animais , Receptores Purinérgicos P2X7/metabolismo , Animais , Técnicas de Introdução de Genes , Humanos , Camundongos , Camundongos Knockout
11.
J Neurosci ; 35(24): 9007-16, 2015 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-26085626

RESUMO

Anxiety-related psychiatric disorders represent one of the largest health burdens worldwide. Single nucleotide polymorphisms of the FK506 binding protein 51 (FKBP51) gene have been repeatedly associated with anxiety-related disorders and stress sensitivity. Given the intimate relationship of stress and anxiety, we hypothesized that amygdala FKBP51 may mediate anxiety-related behaviors. Mimicking the stress effect by specifically overexpressing FKBP51 in the basolateral amygdala (BLA) or central amygdala resulted in increased anxiety-related behavior, respectively. In contrast, application of a highly selective FKBP51 point mutant antagonist, following FKBP51(mut) BLA-overexpression, reduced the anxiogenic phenotype. We subsequently tested a novel FKBP51 antagonist, SAFit2, in wild-type mice via BLA microinjections, which reduced anxiety-related behavior. Remarkably, the same effect was observed following peripheral administration of SAFit2. To our knowledge, this is the first in vivo study using a specific FKBP51 antagonist, thereby unraveling the role of FKBP51 and its potential as a novel drug target for the improved treatment of anxiety-related disorders.


Assuntos
Ansiolíticos/administração & dosagem , Ansiedade/metabolismo , Proteínas de Ligação a Tacrolimo/antagonistas & inibidores , Proteínas de Ligação a Tacrolimo/biossíntese , Tonsila do Cerebelo/efeitos dos fármacos , Tonsila do Cerebelo/metabolismo , Animais , Ansiedade/tratamento farmacológico , Ansiedade/psicologia , Ligantes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microinjeções/métodos , Fatores de Risco
12.
PLoS Med ; 11(11): e1001755, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25386878

RESUMO

BACKGROUND: FK506 binding protein 51 (FKBP51) is an Hsp90 co-chaperone and regulator of the glucocorticoid receptor, and consequently of stress physiology. Clinical studies suggest a genetic link between FKBP51 and antidepressant response in mood disorders; however, the underlying mechanisms remain elusive. The objective of this study was to elucidate the role of FKBP51 in the actions of antidepressants, with a particular focus on pathways of autophagy. METHODS AND FINDINGS: Established cell lines, primary neural cells, human blood cells of healthy individuals and patients with depression, and mice were treated with antidepressants. Mice were tested for several neuroendocrine and behavioral parameters. Protein interactions and autophagic pathway activity were mainly evaluated by co-immunoprecipitation and Western blots. We first show that the effects of acute antidepressant treatment on behavior are abolished in FKBP51 knockout (51KO) mice. Autophagic markers, such as the autophagy initiator Beclin1, were increased following acute antidepressant treatment in brains from wild-type, but not 51KO, animals. FKBP51 binds to Beclin1, changes decisive protein interactions and phosphorylation of Beclin1, and triggers autophagic pathways. Antidepressants and FKBP51 exhibited synergistic effects on these pathways. Using chronic social defeat as a depression-relevant stress model in combination with chronic paroxetine (PAR) treatment revealed that the stress response, as well as the effects of antidepressants on behavior and autophagic markers, depends on FKBP51. In human blood cells of healthy individuals, FKBP51 levels correlated with the potential of antidepressants to induce autophagic pathways. Importantly, the clinical antidepressant response of patients with depression (n = 51) could be predicted by the antidepressant response of autophagic markers in patient-derived peripheral blood lymphocytes cultivated and treated ex vivo (Beclin1/amitriptyline: r = 0.572, p = 0.003; Beclin1/PAR: r = 0.569, p = 0.004; Beclin1/fluoxetine: r = 0.454, p = 0.026; pAkt/amitriptyline: r =  -0.416, p = 0.006; pAkt/PAR: r =  -0.355, p = 0.021; LC3B-II/PAR: r = 0.453, p = 0.02), as well as by the lymphocytic expression levels of FKBP51 (r = 0.631, p<0.0001), pAkt (r =  -0.515, p = 0.003), and Beclin1 (r = 0.521, p = 0.002) at admission. Limitations of the study include the use of male mice only and the relatively low number of patients for protein analyses. CONCLUSIONS: To our knowledge, these findings provide the first evidence for the molecular mechanism of FKBP51 in priming autophagic pathways; this process is linked to the potency of at least some antidepressants. These newly discovered functions of FKBP51 also provide novel predictive markers for treatment outcome, consistent with physiological and potential clinical relevance. Please see later in the article for the Editors' Summary.


Assuntos
Antidepressivos/farmacologia , Autofagia/efeitos dos fármacos , Autofagia/genética , Depressão/genética , Transtorno Depressivo/genética , Estresse Psicológico/genética , Proteínas de Ligação a Tacrolimo/genética , Adulto , Amitriptilina/farmacologia , Amitriptilina/uso terapêutico , Animais , Antidepressivos/uso terapêutico , Proteínas Reguladoras de Apoptose/metabolismo , Proteína Beclina-1 , Células Sanguíneas/metabolismo , Depressão/tratamento farmacológico , Depressão/metabolismo , Transtorno Depressivo/tratamento farmacológico , Transtorno Depressivo/metabolismo , Feminino , Humanos , Leucócitos Mononucleares/metabolismo , Masculino , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Paroxetina/farmacologia , Paroxetina/uso terapêutico , Ratos Sprague-Dawley , Estresse Psicológico/tratamento farmacológico , Estresse Psicológico/metabolismo , Proteínas de Ligação a Tacrolimo/metabolismo , Adulto Jovem
13.
Mol Metab ; 80: 101883, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38237896

RESUMO

OBJECTIVE: Metabolic Syndrome, which can be induced or exacerbated by current antipsychotic drugs (APDs), is highly prevalent in schizophrenia patients. Recent preclinical and clinical evidence suggest that agonists at trace amine-associated receptor 1 (TAAR1) have potential as a new treatment option for schizophrenia. Intriguingly, preclinical tudies have also identified TAAR1 as a novel regulator of metabolic control. Here we evaluated the effects of three TAAR1 agonists, including the clinical development candidate ulotaront, on body weight, metabolic parameters and modulation of neurocircuits implicated in homeostatic and hedonic feeding. METHODS: Effects of TAAR1 agonists (ulotaront, RO5166017 and/or RO5263397) on body weight, food intake and/or metabolic parameters were investigated in rats fed a high-fat diet (HFD) and in a mouse model of diet-induced obesity (DIO). Body weight effects were also determined in a rat and mouse model of olanzapine-, and corticosterone-induced body weight gain, respectively. Glucose tolerance was assessed in lean and diabetic db/db mice and fasting plasma glucose and insulin examined in DIO mice. Effects on gastric emptying were evaluated in lean mice and rats. Drug-induced neurocircuit modulation was evaluated in mice using whole-brain imaging of c-fos protein expression. RESULTS: TAAR1 agonists improved oral glucose tolerance by inhibiting gastric emptying. Sub-chronic administration of ulotaront in rats fed a HFD produced a dose-dependent reduction in body weight, food intake and liver triglycerides compared to vehicle controls. In addition, a more rapid reversal of olanzapine-induced weight gain and food intake was observed in HFD rats switched to ulotaront or RO5263397 treatment compared to those switched to vehicle. Chronic ulotaront administration also reduced body weight and improved glycemic control in DIO mice, and normalized corticosterone-induced body weight gain in mice. TAAR1 activation increased neuronal activity in discrete homeostatic and hedonic feeding centers located in the dorsal vagal complex and hypothalamus with concurrent activation of several limbic structures. CONCLUSION: The current data demonstrate that TAAR1 agonists, as a class, not only lack APD-induced metabolic liabilities but can reduce body weight and improve glycemic control in rodent models. The underlying mechanisms likely include TAAR1-mediated peripheral effects on glucose homeostasis and gastric emptying as well as central regulation of energy balance and food intake.


Assuntos
Corticosterona , Controle Glicêmico , Receptores Acoplados a Proteínas G , Humanos , Ratos , Camundongos , Animais , Olanzapina , Peso Corporal , Aumento de Peso , Modelos Animais de Doenças , Glucose
14.
Neuropsychopharmacology ; 49(7): 1091-1103, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38110609

RESUMO

Aberrant dopaminergic and glutamatergic function, particularly within the striatum and hippocampus, has repeatedly been associated with the pathophysiology of schizophrenia. Supported by preclinical and recent clinical data, trace amine-associated receptor 1 (TAAR1) agonism has emerged as a potential new treatment approach for schizophrenia. While current evidence implicates TAAR1-mediated regulation of dopaminergic tone as the primary circuit mechanism, little is known about the effects of TAAR1 agonists on the glutamatergic system and excitation-inhibition balance. Here we assessed the impact of ulotaront (SEP-363856), a TAAR1 agonist in Phase III clinical development for schizophrenia, on glutamate function in the mouse striatum and hippocampus. Ulotaront reduced spontaneous glutamatergic synaptic transmission and neuronal firing in striatal and hippocampal brain slices, respectively. Interestingly, ulotaront potentiated electrically-evoked excitatory synaptic transmission in both brain regions, suggesting the ability to modulate glutamatergic signaling in a state-dependent manner. Similar striatal effects were also observed with the TAAR1 agonist, RO5166017. Furthermore, we show that ulotaront regulates excitation-inhibition balance in the striatum by specifically modulating glutamatergic, but not GABAergic, spontaneous synaptic events. These findings expand the mechanistic circuit hypothesis of ulotaront and TAAR1 agonists, which may be uniquely positioned to normalize both the excessive dopaminergic tone and regulate abnormal glutamatergic function associated with schizophrenia.


Assuntos
Corpo Estriado , Ácido Glutâmico , Hipocampo , Camundongos Endogâmicos C57BL , Receptores Acoplados a Proteínas G , Animais , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/metabolismo , Ácido Glutâmico/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Masculino , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Camundongos , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia
15.
Nat Commun ; 15(1): 2635, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528004

RESUMO

High levels of proinflammatory cytokines induce neurotoxicity and catalyze inflammation-driven neurodegeneration, but the specific release mechanisms from microglia remain elusive. Here we show that secretory autophagy (SA), a non-lytic modality of autophagy for secretion of vesicular cargo, regulates neuroinflammation-mediated neurodegeneration via SKA2 and FKBP5 signaling. SKA2 inhibits SA-dependent IL-1ß release by counteracting FKBP5 function. Hippocampal Ska2 knockdown in male mice hyperactivates SA resulting in neuroinflammation, subsequent neurodegeneration and complete hippocampal atrophy within six weeks. The hyperactivation of SA increases IL-1ß release, contributing to an inflammatory feed-forward vicious cycle including NLRP3-inflammasome activation and Gasdermin D-mediated neurotoxicity, which ultimately drives neurodegeneration. Results from protein expression and co-immunoprecipitation analyses of male and female postmortem human brains demonstrate that SA is hyperactivated in Alzheimer's disease. Overall, our findings suggest that SKA2-regulated, hyperactive SA facilitates neuroinflammation and is linked to Alzheimer's disease, providing mechanistic insight into the biology of neuroinflammation.


Assuntos
Doença de Alzheimer , Autofagia , Proteínas Cromossômicas não Histona , Proteína 3 que Contém Domínio de Pirina da Família NLR , Doenças Neuroinflamatórias , Animais , Feminino , Humanos , Masculino , Camundongos , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Autofagia/genética , Proteínas Cromossômicas não Histona/metabolismo , Citocinas/metabolismo , Inflamassomos/metabolismo , Microglia/metabolismo , Doenças Neuroinflamatórias/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo
16.
bioRxiv ; 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37066393

RESUMO

High levels of proinflammatory cytokines induce neurotoxicity and catalyze inflammation-driven neurodegeneration, but the specific release mechanisms from microglia remain elusive. We demonstrate that secretory autophagy (SA), a non-lytic modality of autophagy for secretion of vesicular cargo, regulates neuroinflammation-mediated neurodegeneration via SKA2 and FKBP5 signaling. SKA2 inhibits SA-dependent IL-1ß release by counteracting FKBP5 function. Hippocampal Ska2 knockdown in mice hyperactivates SA resulting in neuroinflammation, subsequent neurodegeneration and complete hippocampal atrophy within six weeks. The hyperactivation of SA increases IL-1ß release, initiating an inflammatory feed-forward vicious cycle including NLRP3-inflammasome activation and Gasdermin D (GSDMD)-mediated neurotoxicity, which ultimately drives neurodegeneration. Results from protein expression and co-immunoprecipitation analyses of postmortem brains demonstrate that SA is hyperactivated in Alzheimer's disease. Overall, our findings suggest that SKA2-regulated, hyperactive SA facilitates neuroinflammation and is linked to Alzheimer's disease, providing new mechanistic insight into the biology of neuroinflammation.

17.
Cell Mol Neurobiol ; 32(5): 815-28, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22198557

RESUMO

The corticotropin-releasing hormone (CRH) and its cognate receptors have been implicated in the pathophysiology of stress-related disorders. Hypersecretion of central CRH and elevated glucocorticoid levels, as a consequence of impaired feedback control, have been shown to accompany mood and anxiety disorders. However, a clear discrimination of direct effects of centrally hypersecreted CRH from those resulting from HPA axis activation has been difficult. Applying a conditional strategy, we have generated two conditional CRH-overexpressing mouse lines: CRH-COE ( Del ) mice overexpress CRH throughout the body, while CRH-COE ( APit ) mice selectively overexpress CRH in the anterior and intermediate lobe of the pituitary. Both mouse lines show increased basal plasma corticosterone levels and consequently develop signs of Cushing's syndrome. However, while mice ubiquitously overexpressing CRH exhibited increased anxiety-related behaviour, overexpression of CRH in the pituitary did not produce alterations in emotional behaviour. These results suggest that chronic hypercorticosteroidism alone is not sufficient to alter anxiety-related behaviour but rather that central CRH hyperdrive on its own or in combination with elevated glucocorticoids is responsible for the increase in anxiety-related behaviour. In conclusion, the generated mouse lines represent valuable animal models to study the consequences of chronic CRH overproduction and HPA axis activation.


Assuntos
Comportamento Animal/fisiologia , Hormônio Liberador da Corticotropina/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipotálamo-Hipofisário/patologia , Sistema Hipófise-Suprarrenal/metabolismo , Sistema Hipófise-Suprarrenal/patologia , Animais , Ansiedade/metabolismo , Ansiedade/patologia , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Especificidade de Órgãos , Hipófise/metabolismo , Sono REM
18.
Drug Alcohol Depend ; 231: 109261, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35033729

RESUMO

BACKGROUND: Ulotaront (SEP-363856) is a trace amine-associated receptor 1 (TAAR1) agonist with 5-hydroxytryptamine type 1A (5-HT1A) agonist activity that is currently in Phase 3 clinical development for the treatment of schizophrenia. Unlike available antipsychotics, the efficacy of ulotaront is not mediated by blockade of dopamine D2 or serotonin 5-HT2A receptors. In a short-term randomized clinical trial, ulotaront has demonstrated significant efficacy in the treatment of adults with an acute exacerbation of schizophrenia. Given ulotaront's novel mechanism of action a series of preclinical studies were performed to evaluate its potential abuse liability. METHODS: A battery of studies were conducted in male and female rats to evaluate whether ulotaront produces behavioral changes suggestive of human abuse potential. In addition, studies were undertaken to probe the potential for ulotaront to block reinstatement of cocaine-seeking behavior in male rats. RESULTS: Ulotaront was not self-administered by rats trained to self-administer amphetamine, cocaine, or heroin. The subjective qualities of ulotaront were distinct from those produced by amphetamine in a drug discrimination procedure. Ulotaront, and buspirone, a non-scheduled anxiolytic with 5-HT1A agonism, partially generalized to the interoceptive cue elicited by 3, 4-methylenedioxymethamphetamine (MDMA). In addition, ulotaront demonstrated a trend to reduce cocaine-primed induced reinstatement, and dose-dependently reduced cue-reinstated responding. CONCLUSION: The current results suggest that the TAAR1/5-HT1A agonist ulotaront is not likely to pose a risk for recreational abuse in humans and may have potential therapeutic utility as a treatment of substance use disorders.


Assuntos
Cocaína , Animais , Sinais (Psicologia) , Relação Dose-Resposta a Droga , Extinção Psicológica , Feminino , Masculino , Ratos , Receptores Acoplados a Proteínas G , Recidiva , Autoadministração , Agonistas do Receptor 5-HT1 de Serotonina/farmacologia
19.
ACS Med Chem Lett ; 13(1): 92-98, 2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-35047111

RESUMO

Ulotaront (SEP-363856) is a trace-amine associated receptor 1 (TAAR1) agonist with 5-HT1A receptor agonist activity in Phase 3 clinical development, with FDA Breakthrough Therapy Designation, for the treatment of schizophrenia. TAAR1 is a G-protein-coupled receptor (GPCR) that is expressed in cortical, limbic, and midbrain monoaminergic regions. It is activated by endogenous trace amines, and is believed to play an important role in modulating dopaminergic, serotonergic, and glutamatergic circuitry. TAAR1 agonism data are reported herein for ulotaront and its analogues in comparison to endogenous TAAR1 agonists. In addition, a human TAAR1 homology model was built around ulotaront to identify key interactions and attempt to better understand the scaffold-specific TAAR1 agonism structure-activity relationships.

20.
Transl Psychiatry ; 11(1): 228, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33879769

RESUMO

SEP-363856 is a trace amine-associated receptor 1 (TAAR1) and 5-hydroxytryptamine type 1A (5-HT1A) agonist, currently in Phase 3 clinical trials for the treatment of schizophrenia. Although SEP-363856 activates TAAR1 and 5-HT1A receptors in vitro, an accessible marker of time- and concentration-dependent effects of SEP-363856 in humans is lacking. In rodents, SEP-363856 has been shown to suppress rapid eye movement (REM) sleep. The aim of the current study was to translate the REM sleep effects to humans and determine pharmacokinetic/pharmacodynamic (PK/PD) relationships of SEP-363856 on a measure of brain activity. The effects of SEP-363856 were evaluated in a randomized, double-blind, placebo-controlled, 2-way crossover study of single oral doses (50 and 10 mg) on REM sleep in healthy male subjects (N = 12 at each dose level). Drug concentrations were sampled during sleep to interpolate individual subject's pharmacokinetic trajectories. SEP-363856 suppressed REM sleep parameters with very large effect sizes (>3) following single doses of 50 mg and plasma concentrations ≥100 ng/mL. Below that effective concentration, the 10 mg dose elicited much smaller effects, increasing only the latency to REM sleep (effect size = 1). The PK/PD relationships demonstrated that REM sleep probability increased as drug concentrations declined below 100 ng/mL over the course of the night. SEP-363856 was generally safe and well tolerated at both doses. The REM sleep-suppressing effects of SEP-363856 provide an accessible marker of brain activity, which can aid in dose selection and help elucidate its therapeutic potential in further clinical trials.


Assuntos
Serotonina , Sono REM , Estudos Cross-Over , Método Duplo-Cego , Humanos , Masculino , Piranos , Receptores Acoplados a Proteínas G , Sono
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA