Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 120(7): 076802, 2018 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-29542952

RESUMO

Our analysis of the contact formation processes undergone by Au, Ag, and Cu nanojunctions reveals that the distance at which the two closest atoms on a pair of opposing electrodes jump into contact is, on average, 2 times longer for Au than either Ag or Cu. This suggests the existence of a longer-range interaction between those two atoms in the case of Au, a result of the significant relativistic energy contributions to the electronic structure of this metal, as confirmed by ab initio calculations. Once in the contact regime, the differences between Au, Ag, and Cu are subtle, and the conductance of single-atom contacts for metals of similar chemical valence is mostly determined by geometry and coordination.

2.
J Phys Chem Lett ; 14(35): 7931-7939, 2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37646507

RESUMO

It is generally accepted that spin-dependent electron transmission may appear in chiral systems, even without magnetic components, as long as significant spin-orbit coupling is present in some of its elements. However, how this chirality-induced spin selectivity (CISS) manifests in experiments, where the system is taken out of equilibrium, is still debated. Aided by group theoretical considerations and nonequilibrium DFT-based quantum transport calculations, here we show that when spatial symmetries that forbid a finite spin polarization in equilibrium are broken, a net spin accumulation appears at finite bias in an arbitrary two-terminal nanojunction. Furthermore, when a suitably magnetized detector is introduced into the system, the net spin accumulation, in turn, translates into a finite magneto-conductance. The symmetry prerequisites are mostly analogous to those for the spin polarization at any bias with the vectorial nature given by the direction of magnetization, hence establishing an interconnection between these quantities.

3.
ACS Nano ; 17(7): 6452-6465, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-36947721

RESUMO

Spin-orbit coupling gives rise to a range of spin-charge interconversion phenomena in nonmagnetic systems where certain spatial symmetries are reduced or absent. Chirality-induced spin-selectivity (CISS), a term that generically refers to a spin-dependent electron transfer in nonmagnetic chiral systems, is one such case, appearing in a variety of seemingly unrelated situations ranging from inorganic materials to molecular devices. In particular, the origin of CISS in molecular junctions is a matter of an intense current debate. Here, we derive a set of geometrical conditions for this effect to appear, hinting at the fundamental role of symmetries beyond otherwise relevant quantitative issues. Our approach, which draws on the use of point-group symmetries within the scattering formalism for transport, shows that electrode symmetries are as important as those of the molecule when it comes to the emergence of a spin-polarization and, by extension, to the possible appearance of CISS. It turns out that standalone metallic nanocontacts can exhibit spin-polarization when relative rotations which reduce the symmetry are introduced. As a corollary, molecular junctions with achiral molecules can also exhibit spin-polarization along the direction of transport, provided that the whole junction is chiral in a specific way. This formalism also allows the prediction of qualitative changes of the spin-polarization upon substitution of a chiral molecule in the junction with its enantiomeric partner. Quantum transport calculations based on density functional theory corroborate all of our predictions and provide further quantitative insight within the single-particle framework.

4.
J Phys Chem C Nanomater Interfaces ; 127(48): 23303-23311, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38352239

RESUMO

In the field of molecular electronics, especially in quantum transport experiments, determining the geometrical configurations of a single molecule trapped between two electrodes can be challenging. To address this challenge, we employed a combination of molecular dynamics (MD) simulations and electronic transport calculations based on density functional theory to determine the molecular orientation in our break-junction experiments under ambient conditions. The molecules used in this study are common solvents used in molecular electronics, such as benzene, toluene (aromatic), and cyclohexane (aliphatic). Furthermore, we introduced a novel criterion based on the normal vector of the surface formed by the cavity of these ring-shaped monocyclic hydrocarbon molecules to clearly define the orientation of the molecules with respect to the electrodes. By comparing the results obtained through MD simulations and density functional theory with experimental data, we observed that both are in good agreement. This agreement helps us to uncover the different geometrical configurations that these molecules adopt in break-junction experiments. This approach can significantly improve our understanding of molecular electronics, especially when using more complex cyclic hydrocarbons.

5.
Phys Rev E ; 104(3-1): 034101, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34654188

RESUMO

Fluctuation theorems allow one to obtain equilibrium information from nonequilibrium experiments. The probability distribution function of the relevant magnitude measured along the irreversible nonequilibrium trajectories is an essential ingredient of fluctuation theorems. In small systems, where fluctuations can be larger than average values, probability distribution functions often deviate from being Gaussian, showing long tails, mostly exponential, and usually strongly asymmetric. Recently, the probability distribution function of the van Hove correlation function of the relevant magnitude was calculated, instead of that of the magnitude itself. The resulting probability distribution function is highly symmetric, obscuring the application of fluctuation theorems. Here, the discussion is illustrated with the help of results for the heat exchanged during plastic deformation of aluminum nanowires, obtained from molecular dynamics calculations. We find that the probability distribution function for the heat exchanged is centrally Gaussian, with asymmetric exponential tails further out. By calculating the symmetry function we show that this distribution is consistent with fluctuation theorems relating the differences between two equilibrium states to an infinite number of nonequilibrium paths connecting those two states.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA