Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Phys Rev Lett ; 133(2): 020401, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39073943

RESUMO

Quantum synchronization is crucial for understanding complex dynamics and holds potential applications in quantum computing and communication. Therefore, assessing the thermodynamic resources required for finite-time synchronization in continuous-variable systems is a critical challenge. In the present work, we find these resources to be extensive for large systems. We also bound the speed of quantum and classical synchronization in coupled damped oscillators with non-Hermitian anti-PT-symmetric interactions, and show that the speed of synchronization is limited by the interaction strength relative to the damping. Compared to the classical limit, we find that quantum synchronization is slowed by the noncommutativity of the Hermitian and anti-Hermitian terms. Our general results could be tested experimentally, and we suggest an implementation in photonic systems.

2.
Chaos ; 34(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38579152

RESUMO

It is a well-understood fact that the transport of excitations throughout a lattice is intimately governed by the underlying structures. Hence, it is only natural to recognize that the dispersion of information also has to depend on the lattice geometry. In the present work, we demonstrate that two-dimensional lattices described by the Bose-Hubbard model exhibit information scrambling for systems as little as two hexagons. However, we also find that the out-of-time-ordered correlator (OTOC) shows the exponential decay characteristic for quantum chaos only for a judicious choice of local observables. More generally, the OTOC is better described by Gaussian-exponential convolutions, which alludes to the close similarity of information scrambling and decoherence theory.

3.
Entropy (Basel) ; 25(12)2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38136453

RESUMO

Quantum Darwinism explains the emergence of classical objectivity within a quantum universe. However, to date, most research on quantum Darwinism has focused on specific models and their stationary properties. To further our understanding of the quantum-to-classical transition, it appears desirable to identify the general criteria a Hamiltonian has to fulfill to support classical reality. To this end, we categorize all N-qubit models with two-body interactions, and show that only those with separable interaction of the system and environment can support a pointer basis. We further demonstrate that "perfect" quantum Darwinism can only emerge if there are no intra-environmental interactions. Our analysis is complemented by solving the ensuing dynamics. We find that in systems exhibiting information scrambling, the dynamical emergence of classical objectivity directly competes with the non-local spread of quantum correlations. Our rigorous findings are illustrated through the numerical analysis of four representative models.

4.
Entropy (Basel) ; 25(2)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36832558

RESUMO

We are in the noisy intermediate-scale quantum (NISQ) devices' era, in which quantum hardware has become available for application in real-world problems. However, demonstrations of the usefulness of such NISQ devices are still rare. In this work, we consider a practical railway dispatching problem: delay and conflict management on single-track railway lines. We examine the train dispatching consequences of the arrival of an already delayed train to a given network segment. This problem is computationally hard and needs to be solved almost in real time. We introduce a quadratic unconstrained binary optimization (QUBO) model of this problem, which is compatible with the emerging quantum annealing technology. The model's instances can be executed on present-day quantum annealers. As a proof-of-concept, we solve selected real-life problems from the Polish railway network using D-Wave quantum annealers. As a reference, we also provide solutions calculated with classical methods, including the conventional solution of a linear integer version of the model as well as the solution of the QUBO model using a tensor network-based algorithm. Our preliminary results illustrate the degree of difficulty of real-life railway instances for the current quantum annealing technology. Moreover, our analysis shows that the new generation of quantum annealers (the advantage system) does not perform well on those instances, either.

5.
Phys Rev Lett ; 129(17): 170602, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36332265

RESUMO

The operation of near-term quantum technologies requires the development of feasible, implementable, and robust strategies of controlling complex many body systems. To this end, a variety of techniques, so-called "shortcuts to adiabaticity," have been developed. Many of these shortcuts have already been demonstrated to be powerful and implementable in distinct scenarios. Yet, it is often also desirable to have additional, approximate strategies available that are applicable to a large class of systems. Hence, in this Letter, we take inspiration from thermodynamics and propose to focus on the macrostate, rather than the microstate. Adiabatic dynamics can then be identified as such processes that preserve the equation of state, and systematic corrections are obtained from adiabatic perturbation theory. We demonstrate this approach by improving upon fast quasiadiabatic driving, and by applying the method to the quantum Ising chain in the transverse field.


Assuntos
Condução de Veículo , Termodinâmica
6.
Phys Rev Lett ; 129(1): 010401, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35841578

RESUMO

We establish bounds on quantum correlations in many-body systems. They reveal what sort of information about a quantum system can be simultaneously recorded in different parts of its environment. Specifically, independent agents who monitor environment fragments can eavesdrop only on amplified and redundantly disseminated-hence, effectively classical-information about the decoherence-resistant pointer observable. We also show that the emergence of classical objectivity is signaled by a distinctive scaling of the conditional mutual information, bypassing hard numerical optimizations. Our results validate the core idea of quantum Darwinism: objective classical reality does not need to be postulated and is not accidental, but rather a compelling emergent feature of quantum theory that otherwise-in the absence of decoherence and amplification-leads to "quantum weirdness." In particular, a lack of consensus between agents that access environment fragments is bounded by the information deficit, a measure of the incompleteness of the information about the system.

7.
Phys Rev Lett ; 128(1): 010401, 2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-35061495

RESUMO

"How much information about a system S can one extract from a fragment F of the environment E that decohered it?" is the central question of Quantum Darwinism. To date, most answers relied on the quantum mutual information of SF, or on the Holevo bound on the channel capacity of F to communicate the classical information encoded in S. These are reasonable upper bounds on what is really needed but much harder to calculate-the accessible information in the fragment F about S. We consider a model based on imperfect c-not gates where all the above can be computed, and discuss its implications for the emergence of objective classical reality. We find that all relevant quantities, such as the quantum mutual information as well as various bounds on the accessible information exhibit similar behavior. In the regime relevant for the emergence of objective classical reality this includes scaling independent of the quality of the imperfect c-not gates or the size of E, and even nearly independent of the initial state of S.

8.
Entropy (Basel) ; 24(5)2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35626551

RESUMO

While quantum phase transitions share many characteristics with thermodynamic phase transitions, they are also markedly different as they occur at zero temperature. Hence, it is not immediately clear whether tools and frameworks that capture the properties of thermodynamic phase transitions also apply in the quantum case. Concerning the crossing of thermodynamic critical points and describing its non-equilibrium dynamics, the Kibble-Zurek mechanism and linear response theory have been demonstrated to be among the very successful approaches. In the present work, we show that these two approaches are also consistent in the description of quantum phase transitions, and that linear response theory can even inform arguments of the Kibble-Zurek mechanism. In particular, we show that the relaxation time provided by linear response theory gives a rigorous argument for why to identify the "gap" as a relaxation rate, and we verify that the excess work computed from linear response theory exhibits Kibble-Zurek scaling.

9.
Entropy (Basel) ; 23(11)2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34828177

RESUMO

Envariance is a symmetry exhibited by correlated quantum systems. Inspired by this "quantum fact of life," we propose a novel method for shortcuts to adiabaticity, which enables the system to evolve through the adiabatic manifold at all times, solely by controlling the environment. As the main results, we construct the unique form of the driving on the environment that enables such dynamics, for a family of composite states of arbitrary dimension. We compare the cost of this environment-assisted technique with that of counterdiabatic driving, and we illustrate our results for a two-qubit model.

10.
Entropy (Basel) ; 23(9)2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34573732

RESUMO

The quantum ergotropy quantifies the maximal amount of work that can be extracted from a quantum state without changing its entropy. Given that the ergotropy can be expressed as the difference of quantum and classical relative entropies of the quantum state with respect to the thermal state, we define the classical ergotropy, which quantifies how much work can be extracted from distributions that are inhomogeneous on the energy surfaces. A unified approach to treat both quantum as well as classical scenarios is provided by geometric quantum mechanics, for which we define the geometric relative entropy. The analysis is concluded with an application of the conceptual insight to conditional thermal states, and the correspondingly tightened maximum work theorem.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA