Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Am Chem Soc ; 142(28): 12005-12009, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32573242

RESUMO

Insights into energy flow dynamics at ice surfaces are essential for understanding chemical dynamics relevant to atmospheric and geographical sciences. Here, employing ultrafast surface-specific spectroscopy, we report the interfacial vibrational dynamics of ice Ih. A comparison to liquid water surfaces reveals accelerated vibrational energy relaxation and dissipation at the ice surface for hydrogen-bonded OH groups. In contrast, free-OH groups sticking into the vapor phase exhibit substantially slower vibrational dynamics on ice. The acceleration and deceleration of vibrational dynamics of these different OH groups at the ice surface are attributed to enhanced intermolecular coupling and reduced rotational mobility, respectively. Our results highlight the unique properties of free-OH groups on ice, putatively linked to the high catalytic activities of ice surfaces.

2.
J Am Chem Soc ; 142(42): 17956-17965, 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-32985179

RESUMO

Heterogeneous ice nucleation (HIN) triggered by mineral surfaces typically exposed to various ions can have a significant impact on the regional atmosphere and climate. However, the dependence of HIN on the nature of the mineral surface ions is still largely unexplored due to the complexity of mineral surfaces. Because K+ on the atomically flat (001) surface of mica can be readily replaced by different cations through ion exchange, muscovite mica was selected; its simple nature provides a very straightforward system that can serve as the model for investigating the effects of mineral surface ions on HIN. Our experiments show that the surface (001) of H+-exchanged mica displays markedly higher HIN efficiencies than that of Na-/K-mica. Vibrational sum-frequency generation spectroscopy reveals that H-mica induces substantially less orientation ordering than Na-/K-mica within the contact water layer at the interface. Molecular dynamics simulations suggest that the HIN efficiency of mica depends on the positional arrangement and orientation of the interfacial water. The formation of the hexagonal ice Ih basal-type structure in the first water layer atop the mica surface facilitates HIN, which is determined by the size of the protruding ions atop the mica surface and by the surface adsorption energy. The orientational distribution is optimal for HIN when 25% of the water molecules in the first water layer atop the mica surface have one OH group pointing up and 25% have one OH group pointing down, which, in turn, is determined by the surface charge distribution.

3.
Phys Chem Chem Phys ; 22(18): 10142-10148, 2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32347258

RESUMO

Zwitterionic phospholipids are one of the main constituents of biological membranes. The electric field associated with the two opposite headgroup charges aligns water molecules in the headgroup region. Here, we study the role of water alignment on the sub-picosecond vibrational dynamics of lipid-bound water. To this end, we compare the dynamics of oppositely oriented water associated with, respectively, a phosphocholine (PC) headgroup and an inverse-phosphocholine with non-ethylated phosphate groups (CP). We find that the dynamics are independent of the water orientation, implying that the vibrational dynamics report on the local properties of the water molecules.

4.
J Phys Chem B ; 123(40): 8610-8616, 2019 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-31513402

RESUMO

Heterogeneous ozone chemistry occurring on aerosols is driven by interfacial chemistry and thus affected by the surface state of aerosol particles. Therefore, the effect of electrolytes on the structure of interfacial water has been under intensive investigation. However, consequences for energy dissipation rates and mechanisms at the interface are largely unknown. Using time-resolved sum frequency generation spectroscopy, we reveal that the relaxation pathway is the same for neat water-air as for aqueous solutions of Na2SO4 and Na2CO3. We further show that similar lifetimes are extracted from all investigated systems and that these lifetimes show an excitation frequency dependent relaxation time from 0.2 ps up to 1 ps. Hence, despite static SFG on the same systems revealing that the interfacial aqueous structure changes upon adding electrolytes, the vibrational dynamics are indistinguishable for both pure water and different electrolyte solutions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA