RESUMO
Microporous zeolite-type materials, with crystalline porous structures formed by well-defined channels and cages of molecular dimensions, have been widely employed as heterogeneous catalysts since the early 1960s, due to their wide variety of framework topologies, compositional flexibility and hydrothermal stability. The possible selection of the microporous structure and of the elements located in framework and extraframework positions enables the design of highly selective catalysts with well-defined active sites of acidic, basic or redox character, opening the path to their application in a wide range of catalytic processes. This versatility and high catalytic efficiency is the key factor enabling their use in the activation and conversion of different alkanes, ranging from methane to long chain n-paraffins. Alkanes are highly stable molecules, but their abundance and low cost have been two main driving forces for the development of processes directed to their upgrading over the last 50 years. However, the availability of advanced characterization tools combined with molecular modelling has enabled a more fundamental approach to the activation and conversion of alkanes, with most of the recent research being focused on the functionalization of methane and light alkanes, where their selective transformation at reasonable conversions remains, even nowadays, an important challenge. In this review, we will cover the use of microporous zeolite-type materials as components of mono- and bifunctional catalysts in the catalytic activation and conversion of C1+ alkanes under non-oxidative or oxidative conditions. In each case, the alkane activation will be approached from a fundamental perspective, with the aim of understanding, at the molecular level, the role of the active sites involved in the activation and transformation of the different molecules and the contribution of shape-selective or confinement effects imposed by the microporous structure.
RESUMO
: Recent investigations have shown that different conditions such as diet, the overuse of antibiotics or the colonization of pathogenic microorganisms can alter the population status of the intestinal microbiota. This modification can produce a change from homeostasis to a condition known as imbalance or dysbiosis; however, the role-played by dysbiosis and the development of inflammatory bowel diseases (IBD) has been poorly understood. It was actually not until a few years ago that studies started to develop regarding the role that dendritic cells (DC) of intestinal mucosa play in the sensing of the gut microbiota population. The latest studies have focused on describing the DC modulation, specifically on tolerance response involving T regulatory cells or on the inflammatory response involving reactive oxygen species and tissue damage. Furthermore, the latest studies have also focused on the protective and restorative effect of the population of the gut microbiota given by probiotic therapy, targeting IBD and other intestinal pathologies. In the present work, the authors propose and summarize a recently studied complex axis of interaction between the population of the gut microbiota, the sensing of the DC and its modulation towards tolerance and inflammation, the development of IBD and the protective and restorative effect of probiotics on other intestinal pathologies.