Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 18(7)2017 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-28726718

RESUMO

In some cases, the formation of reactive species from the metabolism of xenobiotics has been linked to toxicity and therefore it is imperative to detect potential bioactivation for candidate drugs during drug discovery. Reactive species can covalently bind to trapping agents in in vitro incubations of compound with human liver microsomes (HLM) fortified with ß-nicotinamide adenine dinucleotide phosphate (NADPH), resulting in a stable conjugate of trapping agent and reactive species, thereby facilitating analytical detection and providing evidence of short-lived reactive metabolites. Since reactive metabolites are typically generated by cytochrome P450 (CYP) oxidation, it is important to ensure high concentrations of trapping agents are not inhibiting the activities of CYP isoforms. Here we assessed the inhibitory properties of fourteen trapping agents against the major human CYP isoforms (CYP1A2, 2C9, 2C19, 2D6 and 3A). Based on our findings, eleven trapping agents displayed inhibition, three of which had IC50 values less than 1 mM (2-mercaptoethanol, N-methylmaleimide and N-ethylmaleimide (NEM)). Three trapping agents (dimedone, N-acetyl-lysine and arsenite) did not inhibit CYP isoforms at concentrations tested. To illustrate effects of CYP inhibition by trapping agents on reactive intermediate trapping, an example drug (ticlopidine) and trapping agent (NEM) were chosen for further studies. For the same amount of ticlopidine (1 µM), increasing concentrations of the trapping agent NEM (0.007-40 mM) resulted in a bell-shaped response curve of NEM-trapped ticlopidine S-oxide (TSO-NEM), due to CYP inhibition by NEM. Thus, trapping studies should be designed to include several concentrations of trapping agent to ensure optimal trapping of reactive metabolites.


Assuntos
Inibidores das Enzimas do Citocromo P-450/farmacologia , Sistema Enzimático do Citocromo P-450/metabolismo , Enxofre/farmacologia , Cromatografia Líquida , Inibidores das Enzimas do Citocromo P-450/química , Feminino , Humanos , Concentração Inibidora 50 , Masculino , Microssomos Hepáticos/metabolismo , Oxirredução , Isoformas de Proteínas , Enxofre/química , Espectrometria de Massas em Tandem , Ticlopidina/química , Ticlopidina/farmacologia
2.
Bioorg Med Chem Lett ; 19(5): 1409-12, 2009 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-19186057

RESUMO

Compound 1 (SNS-314) is a potent and selective Aurora kinase inhibitor that is currently in clinical trials in patients with advanced solid tumors. This communication describes the synthesis of prodrug derivatives of 1 with improved aqueous solubility profiles. In particular, phosphonooxymethyl-derived prodrug 2g has significantly enhanced solubility and is converted to the biologically active parent (1) following iv as well as po administration to rodents.


Assuntos
Compostos de Fenilureia/química , Pró-Fármacos/química , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Tiazóis/química , Água/química , Animais , Antineoplásicos/química , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Aurora Quinases , Masculino , Camundongos , Compostos de Fenilureia/farmacocinética , Compostos de Fenilureia/farmacologia , Pró-Fármacos/farmacocinética , Pró-Fármacos/farmacologia , Proteínas Serina-Treonina Quinases/metabolismo , Ratos , Ratos Sprague-Dawley , Solubilidade , Tiazóis/farmacocinética , Tiazóis/farmacologia
3.
Drug Metab Lett ; 6(1): 43-53, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22372554

RESUMO

Early in the drug discovery process, the identification of cytochrome P450 (CYP) time-dependent inhibition (TDI) is an important step for compound optimization. Here we describe a high-throughput, automated method for the evaluation of TDI utilizing human liver microsomes and conventional CYP-specific mass spectrometer-based probes in a 384-well format. One of the key differences from other published TDI assays is the use of a shift in area the under curve of the percent activity remaining versus inhibitor concentration plot (AUC shift) rather than the traditional fold-shift in IC50, to determine the magnitude of TDI. An AUC shift of < 15% suggests negative TDI and > 15% suggests potential TDI. This AUC shift was used to achieve quantitative data reporting, even in the case of weak inhibitors for which IC50 values cannot be quantified. An Agilent Technologies BioCel 1200 System was programmed such that the TDI liability of up to 77 test compounds, incubated at four test concentrations, with and without NADPH in the pre-incubation, can be analyzed in a single run. The detailed automated methodology, assay validation, data reporting and the novel TDI AUC shift approach to describe magnitude of TDI are presented.


Assuntos
Inibidores das Enzimas do Citocromo P-450 , Inibidores Enzimáticos/farmacologia , Ensaios de Triagem em Larga Escala/métodos , Microssomos Hepáticos/enzimologia , Área Sob a Curva , Automação , Cromatografia Líquida/métodos , Inibidores Enzimáticos/administração & dosagem , Humanos , Concentração Inibidora 50 , Microssomos Hepáticos/metabolismo , NADP/metabolismo , Espectrometria de Massas em Tandem/métodos , Fatores de Tempo
4.
Drug Metab Lett ; 2011 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-21824084

RESUMO

Here we describe a high capacity and high-throughput, automated, 384-well CYP inhibition assay using well-known HLM-based MS probes. We provide consistently robust IC(50) values at the lead optimization stage of the drug discovery process. Our method uses the Agilent Technologies/Velocity11 BioCel 1200 system, timesaving techniques for sample analysis, and streamlined data processing steps. For each experiment, we generate IC(50) values for up to 344 compounds and positive controls for five major CYP isoforms (probe substrate): CYP1A2 (phenacetin), CYP2C9 ((S)-warfarin), CYP2C19 ((S)-mephenytoin), CYP2D6 (dextromethorphan), and CYP3A4/5 (testosterone and midazolam). Each compound is incubated separately at four concentrations with each CYP probe substrate under the optimized incubation condition. Each incubation is quenched with acetonitrile containing the deuterated internal standard of the respective metabolite for each probe substrate. To minimize the number of samples to be analyzed by LC-MS/MS and reduce the amount of valuable MS runtime, we utilize timesaving techniques of cassette analysis (pooling the incubation samples at the end of each CYP probe incubation into one) and column switching (reducing the amount of MS runtime). Here we also report on the comparison of IC(50) results for five major CYP isoforms using our method compared to values reported in the literature.

5.
Drug Metab Lett ; 5(3): 220-30, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21867481

RESUMO

Here we describe a high capacity and high-throughput, automated, 384-well CYP inhibition assay using well-known HLM-based MS probes. We provide consistently robust IC(50) values at the lead optimization stage of the drug discovery process. Our method uses the Agilent Technologies/Velocity11 BioCel 1200 system, timesaving techniques for sample analysis, and streamlined data processing steps. For each experiment, we generate IC(50) values for up to 344 compounds and positive controls for five major CYP isoforms (probe substrate): CYP1A2 (phenacetin), CYP2C9 ((S)-warfarin), CYP2C19 ((S)-mephenytoin), CYP2D6 (dextromethorphan), and CYP3A4/5 (testosterone and midazolam). Each compound is incubated separately at four concentrations with each CYP probe substrate under the optimized incubation condition. Each incubation is quenched with acetonitrile containing the deuterated internal standard of the respective metabolite for each probe substrate. To minimize the number of samples to be analyzed by LC-MS/MS and reduce the amount of valuable MS runtime, we utilize timesaving techniques of cassette analysis (pooling the incubation samples at the end of each CYP probe incubation into one) and column switching (reducing the amount of MS runtime). Here we also report on the comparison of IC(50) results for five major CYP isoforms using our method compared to values reported in the literature.


Assuntos
Inibidores das Enzimas do Citocromo P-450 , Inibidores Enzimáticos/farmacologia , Ensaios de Triagem em Larga Escala/métodos , Microssomos Hepáticos/efeitos dos fármacos , Automação , Cromatografia Líquida/métodos , Inibidores Enzimáticos/administração & dosagem , Feminino , Humanos , Concentração Inibidora 50 , Isoenzimas , Masculino , Microssomos Hepáticos/enzimologia , Espectrometria de Massas em Tandem/métodos
6.
Drug Metab Lett ; 3(2): 125-9, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19601875

RESUMO

In the early stages of drug discovery, the formation of reactive metabolites is often assessed by co-incubating the drug in liver microsomes with a trapping agent in the presence of NADPH. Our group assessed the capability of commonly used trapping agents to reversibly inhibit major cytochrome P450 (CYP) isoforms. Glutathione and cyanide did not inhibit the enzymes at concentrations up to 10 mM; however methoxylamine did show inhibition, with IC(50) values of 0.53 mM for CYP1A2, 4.12 mM for CYP2C9, 2.04 mM for CYP2C19, 9.72 mM for CYP2D6, and 1.26 and >10 mM for CYP3A4/5 (for testosterone and midazolam, respectively, as substrates).


Assuntos
Inibidores das Enzimas do Citocromo P-450 , Glutationa/farmacologia , Hidroxilaminas/farmacologia , Cianeto de Potássio/farmacologia , Relação Dose-Resposta a Droga , Descoberta de Drogas/métodos , Inibidores Enzimáticos/administração & dosagem , Inibidores Enzimáticos/farmacologia , Glutationa/administração & dosagem , Humanos , Hidroxilaminas/administração & dosagem , Concentração Inibidora 50 , Isoenzimas/antagonistas & inibidores , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/enzimologia , Midazolam/metabolismo , Cianeto de Potássio/administração & dosagem , Testosterona/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA