Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(15)2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37569786

RESUMO

Alzheimer's disease (AD) is the leading cause of dementia. No treatments have led to clinically meaningful impacts. A major obstacle for peripherally administered therapeutics targeting the central nervous system is related to the blood-brain barrier (BBB). Ultrasounds associated with microbubbles have been shown to transiently and safely open the BBB. In AD mouse models, the sole BBB opening with no adjunct drugs may be sufficient to reduce lesions and mitigate cognitive decline. However, these therapeutic effects are for now mainly assessed in preclinical mouse models of amyloidosis and remain less documented in tau lesions. The aim of the present study was therefore to evaluate the effects of repeated BBB opening using low-intensity pulsed ultrasounds (LIPU) in tau transgenic P301S mice with two main readouts: tau-positive lesions and microglial cells. Our results show that LIPU-induced BBB opening does not decrease tau pathology and may even potentiate the accumulation of pathological tau in selected brain regions. In addition, LIPU-BBB opening in P301S mice strongly reduced microglia densities in brain parenchyma, suggesting an anti-inflammatory action. These results provide a baseline for future studies using LIPU-BBB opening, such as adjunct drug therapies, in animal models and in AD patients.


Assuntos
Doença de Alzheimer , Tauopatias , Camundongos , Animais , Doença de Alzheimer/genética , Doença de Alzheimer/terapia , Doença de Alzheimer/patologia , Barreira Hematoencefálica/patologia , Tauopatias/terapia , Tauopatias/patologia , Camundongos Transgênicos , Ondas Ultrassônicas
2.
Acta Neuropathol ; 139(3): 443-461, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31822997

RESUMO

In Alzheimer's disease (AD), Tau and Aß aggregates involve sequentially connected regions, sometimes distantly separated. These alterations were studied in the pillar of the fornix (PoF), an axonal tract, to analyse the role of axons in their propagation. The PoF axons mainly originate from the subicular neurons and project to the mamillary body. Forty-seven post-mortem cases at various Braak stages (Tau) and Thal phases (Aß) were analysed by immunohistochemistry. The distribution of the lesions showed that the subiculum was affected before the mamillary body, but neither Tau aggregation nor Aß deposition was consistently first. The subiculum and the mamillary body contained Gallyas positive neurofibrillary tangles, immunolabelled by AT8, TG3, PHF1, Alz50 and C3 Tau antibodies. In the PoF, only thin and fragmented threads were observed, exclusively in the cases with neurofibrillary tangles in the subiculum. The threads were made of Gallyas negative, AT8 and TG3 positive Tau. They were intra-axonal and devoid of paired helical filaments at electron microscopy. We tested PoF homogenates containing Tau AT8 positive axons in a Tau P301S biosensor HEK cell line and found a seeding activity. There was no Aß immunoreactivity detected in the PoF. We could follow microcryodissected AT8 positive axons entering the mamillary body; contacts between Tau positive endings and Aß positive diffuse or focal deposits were observed in CLARITY-cleared mamillary body. In conclusion, we show that non-fibrillary, hyperphosphorylated Tau is transported by the axons of the PoF from the subiculum to the mamillary body and has a seeding activity. Either Tau aggregation or Aß accumulation may occur first in this system: this inconstant order is incompatible with a cause-and-effects relationship. However, both pathologies were correlated and intimately associated, indicating an interaction of the two processes, once initiated.


Assuntos
Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Fórnice/patologia , Vias Neurais/patologia , Proteínas tau/metabolismo , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/metabolismo , Progressão da Doença , Feminino , Fórnice/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Vias Neurais/metabolismo
3.
Mol Psychiatry ; 24(1): 108-125, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29934546

RESUMO

Extracellular aggregates of amyloid ß (Aß) peptides, which are characteristic of Alzheimer's disease (AD), act as an essential trigger for glial cell activation and the release of ATP, leading to the stimulation of purinergic receptors, especially the P2X7 receptor (P2X7R). However, the involvement of P2X7R in the development of AD is still ill-defined regarding the dual properties of this receptor. Particularly, P2X7R activates the NLRP3 inflammasome leading to the release of the pro-inflammatory cytokine, IL-1ß; however, P2X7R also induces cleavage of the amyloid precursor protein generating Aß peptides or the neuroprotective fragment sAPPα. We thus explored in detail the functions of P2X7R in AD transgenic mice. Here, we show that P2X7R deficiency reduced Aß lesions, rescued cognitive deficits and improved synaptic plasticity in AD mice. However, the lack of P2X7R did not significantly affect the release of IL-1ß or the levels of non-amyloidogenic fragment, sAPPα, in AD mice. Instead, our results show that P2X7R plays a critical role in Aß peptide-mediated release of chemokines, particularly CCL3, which is associated with pathogenic CD8+ T cell recruitment. In conclusion, our study highlights a novel detrimental function of P2X7R in chemokine release and supports the notion that P2X7R may be a promising therapeutic target for AD.


Assuntos
Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Receptores Purinérgicos P2X7/genética , Receptores Purinérgicos P2X7/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Citocinas/metabolismo , Modelos Animais de Doenças , Humanos , Inflamassomos/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Camundongos , Camundongos Transgênicos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo
4.
Acta Neuropathol ; 135(6): 839-854, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29696365

RESUMO

Alzheimer's disease (AD) is associated with a progressive loss of synapses and neurons. Studies in animal models indicate that morphological alterations of dendritic spines precede synapse loss, increasing the proportion of large and short ("stubby") spines. Whether similar alterations occur in human patients, and what their functional consequences could be, is not known. We analyzed biopsies from AD patients and APP x presenilin 1 knock-in mice that were previously shown to present a loss of pyramidal neurons in the CA1 area of the hippocampus. We observed that the proportion of stubby spines and the width of spine necks are inversely correlated with synapse density in frontal cortical biopsies from non-AD and AD patients. In mice, the reduction in the density of synapses in the stratum radiatum was preceded by an alteration of spine morphology, with a reduction of their length and an enlargement of their neck. Serial sectioning examined with electron microscopy allowed us to precisely measure spine parameters. Mathematical modeling indicated that the shortening and widening of the necks should alter the electrical compartmentalization of the spines, leading to reduced postsynaptic potentials in spine heads, but not in soma. Accordingly, there was no alteration in basal synaptic transmission, but long-term potentiation and spatial memory were impaired. These results indicate that an alteration of spine morphology could be involved in the early cognitive deficits associated with AD.


Assuntos
Doença de Alzheimer/patologia , Doença de Alzheimer/fisiopatologia , Espinhas Dendríticas/patologia , Espinhas Dendríticas/fisiologia , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Simulação por Computador , Modelos Animais de Doenças , Feminino , Lobo Frontal/patologia , Lobo Frontal/fisiopatologia , Hipocampo/patologia , Hipocampo/fisiopatologia , Humanos , Imageamento Tridimensional , Masculino , Potenciais da Membrana/fisiologia , Camundongos Transgênicos , Microscopia Eletrônica , Pessoa de Meia-Idade , Modelos Neurológicos , Presenilina-1/genética , Presenilina-1/metabolismo , Sinapses/patologia , Técnicas de Cultura de Tecidos
5.
Bull Acad Natl Med ; 199(6): 809-819, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29901881

RESUMO

Specific extracellular deposits, glial or neuronal inclusions help defining an ever increasing number of neurodegenerative diseases. Deposits or inclusions are aggregates of proteins: Aß peptide and tau proteins in Alzheimer disease, a-synuclein in Parkinson disease, for instance. The protein that specifically accumulates in a given disease may be modified by a mutation that can increase its aggregability. Most often the sequence of the protein is normal. Misfolding, despite the protein normal sequence, is then considered the cause of the aggregation. The ubiquitin-proteasome system detects and eliminates misfolded proteins from the cell. Almost all the inclusions are indeed labeled by anti-ubiquitin antibodies, but, in neurodegenerative diseases, the system is unable to get rid of them. The large protein aggregates constituting the inclusions are poorly reactive. Their formation has been consi- dered a defense mechanism, protecting the cell against the toxic action of soluble oligomers that are, in that hypothesis, the real toxic agent, neutralized through aggregation. Soluble oligomers of Aß peptide, tau or a-synuclein,for instance, have indeed been isolated and were shown to be toxic. In the prion hypothesis, the misfolded configuration may be passed from the misfolded to the normal protein by simple contact. There are indeed experimental evidences suggesting that this prion-like mechanism does occur in transgenic rodent models of Aß, tau or a-synuclein pathology. This might be the explanation of thepropagation of the pathology through connections, observed in many neurodegenerative diseases. There is currently no epidemiological data suggesting a transmission of neurodegenerative diseases, comparable to the transmission of Creutzfeldt-Jakob or other prion diseases. The prion-like mechanisms of protein aggregation observed in the experimental animals or suspected through human neuropathology make that possibility not as remote as previously thought.


Assuntos
Doenças Neurodegenerativas/metabolismo , Deficiências na Proteostase/metabolismo , Peptídeos beta-Amiloides/metabolismo , Humanos , alfa-Sinucleína/metabolismo , Proteínas tau/metabolismo
6.
NMR Biomed ; 27(10): 1143-50, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25088227

RESUMO

In this article, we report in vivo (1)H MRS performed in 1.8-µL voxels in a mouse model of Down syndrome (DS). To characterise the excitation-inhibition imbalance observed in DS, metabolite concentrations in the hippocampi of adult Ts65Dn mice, which recapitulate features of DS, were compared with those of their euploid littermates at a voxel 42-fold smaller than in a previously published study. Quantification of the metabolites was performed using a linear combination model. We detected 16 metabolites in the right and left hippocampi. Principal component analysis revealed that the absolute concentrations of the 16 detected metabolites could differentiate between Ts65Dn and euploid hippocampi. Although measurements in the left and right hippocampi were highly correlated, the concentration of individual metabolites was sometimes significantly different in the left and right structures. Thus, bilateral values from Ts65Dn and euploid mice were further compared with Hotelling's test. The level of glutamine was found to be significantly lower, whereas myo-inositol was significantly higher, in the hippocampi of Ts65Dn relative to euploid mice. However, γ-aminobutyric acid (GABA) and glutamate levels remained similar between the groups. Thus, the excitation-inhibition imbalance described in DS does not appear to be related to a radical change in the levels of either GABA or glutamate in the hippocampus. In conclusion, microliter MRS appears to be a valuable tool to detect changes associated with DS, which may be useful in investigating whether differences can be rescued after pharmacological treatments or supplementation with glutamine.


Assuntos
Química Encefálica , Síndrome de Down/metabolismo , Hipocampo/metabolismo , Neuroimagem/métodos , Espectroscopia de Prótons por Ressonância Magnética/métodos , Animais , Modelos Animais de Doenças , Dominância Cerebral , Síndrome de Down/patologia , Feminino , Ácido Glutâmico/metabolismo , Glutamina/metabolismo , Hipocampo/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes Neurológicos , Ressonância Magnética Nuclear Biomolecular , Ácido gama-Aminobutírico/metabolismo
7.
Artigo em Inglês | MEDLINE | ID: mdl-38812098

RESUMO

Neuropathological diagnosis of Alzheimer disease (AD) relies on semiquantitative analysis of phosphorylated tau-positive neurofibrillary tangles (NFTs) and neuritic plaques (NPs), without consideration of lesion heterogeneity in individual cases. We developed a deep learning workflow for automated annotation and segmentation of NPs and NFTs from AT8-immunostained whole slide images (WSIs) of AD brain sections. Fifteen WSIs of frontal cortex from 4 biobanks with varying tissue quality, staining intensity, and scanning formats were analyzed. We established an artificial intelligence (AI)-driven iterative procedure to improve the generation of expert-validated annotation datasets for NPs and NFTs thereby increasing annotation quality by >50%. This strategy yielded an expert-validated annotation database with 5013 NPs and 5143 NFTs. We next trained two U-Net convolutional neural networks for detection and segmentation of NPs or NFTs, achieving high accuracy and consistency (mean Dice similarity coefficient: NPs, 0.77; NFTs, 0.81). The workflow showed high generalization performance across different cases. This study serves as a proof-of-concept for the utilization of proprietary image analysis software (Visiopharm) in the automated deep learning segmentation of NPs and NFTs, demonstrating that AI can significantly improve the annotation quality of complex neuropathological features and enable the creation of highly precise models for identifying these markers in AD brain sections.

8.
Nanomedicine ; 9(5): 712-21, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23220328

RESUMO

Accumulation of amyloid peptide (Aß) in senile plaques is a hallmark lesion of Alzheimer disease (AD). The design of molecules able to target the amyloid pathology in tissue is receiving increasing attention, both for diagnostic and for therapeutic purposes. Curcumin is a fluorescent molecule with high affinity for the Aß peptide but its low solubility limits its clinical use. Curcumin-conjugated nanoliposomes, with curcumin exposed at the surface, were designed. They appeared to be monodisperse and stable. They were non-toxic in vitro, down-regulated the secretion of amyloid peptide and partially prevented Aß-induced toxicity. They strongly labeled Aß deposits in post-mortem brain tissue of AD patients and APPxPS1 mice. Injection in the hippocampus and in the neocortex of these mice showed that curcumin-conjugated nanoliposomes were able to specifically stain the Aß deposits in vivo. Curcumin-conjugated nanoliposomes could find application in the diagnosis and targeted drug delivery in AD. FROM THE CLINICAL EDITOR: In this preclinical study, curcumin-conjugated nanoliposomes were investigated as possible diagnostics and targeted drug delivery system in Alzheimer's disease, demonstrating strong labeling of Aß deposits both in human tissue and in mice, and in vitro downregulation of amyloid peptide secretion and prevention of Aß-induced toxicity.


Assuntos
Doença de Alzheimer/diagnóstico , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/química , Curcumina/administração & dosagem , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/isolamento & purificação , Animais , Autopsia , Corantes/administração & dosagem , Corantes/química , Curcumina/química , Humanos , Lipossomos/administração & dosagem , Lipossomos/química , Camundongos , Nanopartículas/administração & dosagem , Nanopartículas/química , Neocórtex/metabolismo , Neocórtex/patologia , Fragmentos de Peptídeos/química
9.
Elife ; 122023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37431882

RESUMO

Neurotransmitters are released at synapses by synaptic vesicles (SVs), which originate from SV precursors (SVPs) that have traveled along the axon. Because each synapse maintains a pool of SVs, only a small fraction of which are released, it has been thought that axonal transport of SVPs does not affect synaptic function. Here, studying the corticostriatal network both in microfluidic devices and in mice, we find that phosphorylation of the Huntingtin protein (HTT) increases axonal transport of SVPs and synaptic glutamate release by recruiting the kinesin motor KIF1A. In mice, constitutive HTT phosphorylation causes SV over-accumulation at synapses, increases the probability of SV release, and impairs motor skill learning on the rotating rod. Silencing KIF1A in these mice restored SV transport and motor skill learning to wild-type levels. Axonal SVP transport within the corticostriatal network thus influences synaptic plasticity and motor skill learning.

10.
bioRxiv ; 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37293074

RESUMO

Neurodegenerative tauopathies are hypothesized to propagate via brain networks. This is uncertain because we have lacked precise network resolution of pathology. We therefore developed whole-brain staining methods with anti-p-tau nanobodies and imaged in 3D PS19 tauopathy mice, which have pan-neuronal expression of full-length human tau containing the P301S mutation. We analyzed patterns of p-tau deposition across established brain networks at multiple ages, testing the relationship between structural connectivity and patterns of progressive pathology. We identified core regions with early tau deposition, and used network propagation modeling to determine the link between tau pathology and connectivity strength. We discovered a bias towards retrograde network-based propagation of tau. This novel approach establishes a fundamental role for brain networks in tau propagation, with implications for human disease.

11.
bioRxiv ; 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37961104

RESUMO

Connectomics is a nascent neuroscience field to map and analyze neuronal networks. It provides a new way to investigate abnormalities in brain tissue, including in models of Alzheimer's disease (AD). This age-related disease is associated with alterations in amyloid-ß (Aß) and phosphorylated tau (pTau). These alterations correlate with AD's clinical manifestations, but causal links remain unclear. Therefore, studying these molecular alterations within the context of the local neuronal and glial milieu may provide insight into disease mechanisms. Volume electron microscopy (vEM) is an ideal tool for performing connectomics studies at the ultrastructural level, but localizing specific biomolecules within large-volume vEM data has been challenging. Here we report a volumetric correlated light and electron microscopy (vCLEM) approach using fluorescent nanobodies as immuno-probes to localize Alzheimer's disease-related molecules in a large vEM volume. Three molecules (pTau, Aß, and a marker for activated microglia (CD11b)) were labeled without the need for detergents by three nanobody probes in a sample of the hippocampus of the 3xTg Alzheimer's disease model mouse. Confocal microscopy followed by vEM imaging of the same sample allowed for registration of the location of the molecules within the volume. This dataset revealed several ultrastructural abnormalities regarding the localizations of Aß and pTau in novel locations. For example, two pTau-positive post-synaptic spine-like protrusions innervated by axon terminals were found projecting from the axon initial segment of a pyramidal cell. Three pyramidal neurons with intracellular Aß or pTau were 3D reconstructed. Automatic synapse detection, which is necessary for connectomics analysis, revealed the changes in density and volume of synapses at different distances from an Aß plaque. This vCLEM approach is useful to uncover molecular alterations within large-scale volume electron microscopy data, opening a new connectomics pathway to study Alzheimer's disease and other types of dementia.

12.
Free Neuropathol ; 42023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37283933

RESUMO

In a neuropathological series of 20 COVID-19 cases, we analyzed six cases (three biopsies and three autopsies) with multiple foci predominantly affecting the white matter as shown by MRI. The cases presented with microhemorrhages evocative of small artery diseases. This COVID-19 associated cerebral microangiopathy (CCM) was characterized by perivascular changes: arterioles were surrounded by vacuolized tissue, clustered macrophages, large axonal swellings and a crown arrangement of aquaporin-4 immunoreactivity. There was evidence of blood-brain-barrier leakage. Fibrinoid necrosis, vascular occlusion, perivascular cuffing and demyelination were absent. While no viral particle or viral RNA was found in the brain, the SARS-CoV-2 spike protein was detected in the Golgi apparatus of brain endothelial cells where it closely associated with furin, a host protease known to play a key role in virus replication. Endothelial cells in culture were not permissive to SARS-CoV-2 replication. The distribution of the spike protein in brain endothelial cells differed from that observed in pneumocytes. In the latter, the diffuse cytoplasmic labeling suggested a complete replication cycle with viral release, notably through the lysosomal pathway. In contrast, in cerebral endothelial cells the excretion cycle was blocked in the Golgi apparatus. Interruption of the excretion cycle could explain the difficulty of SARS-CoV-2 to infect endothelial cells in vitro and to produce viral RNA in the brain. Specific metabolism of the virus in brain endothelial cells could weaken the cell walls and eventually lead to the characteristic lesions of COVID-19 associated cerebral microangiopathy. Furin as a modulator of vascular permeability could provide some clues for the control of late effects of microangiopathy.

13.
J Alzheimers Dis ; 87(1): 273-284, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35275545

RESUMO

BACKGROUND: The cellular and molecular alterations associated with synapse and neuron loss in Alzheimer's disease (AD) remain unclear. In transgenic mouse models that express mutations responsible for familial AD, neuronal and synaptic losses occur in populations that accumulate fibrillar amyloid-ß 42 (Aß42) intracellularly. OBJECTIVE: We aimed to study the subcellular localization of these fibrillar accumulations and whether such intraneuronal assemblies could be observed in the human pathology. METHODS: We used immunolabeling and various electron microscopy techniques on APP x presenilin1 - knock-in mice and on human cortical biopsies and postmortem samples. RESULTS: We found an accumulation of Aß fibrils in lipofuscin granule-like organelles in APP x presenilin1 - knock-in mice. Electron microscopy of human cortical biopsies also showed an accumulation of undigested material in enlarged lipofuscin granules in neurons from AD compared to age-matched non-AD patients. However, in those biopsies or in postmortem samples we could not detect intraneuronal accumulations of Aß fibrils, neither in the lipofuscin granules nor in other intraneuronal compartments. CONCLUSION: The intralysosomal accumulation of Aß fibrils in specific neuronal populations in APPxPS1-KI mice likely results from a high concentration of Aß42 in the endosome-lysosome system due to the high expression of the transgene in these neurons.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Modelos Animais de Doenças , Humanos , Lipofuscina/metabolismo , Lisossomos/metabolismo , Camundongos , Camundongos Transgênicos , Neurônios/metabolismo
14.
Alzheimers Res Ther ; 14(1): 40, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35260178

RESUMO

BACKGROUND: Temporary disruption of the blood-brain barrier (BBB) using pulsed ultrasound leads to the clearance of both amyloid and tau from the brain, increased neurogenesis, and mitigation of cognitive decline in pre-clinical models of Alzheimer's disease (AD) while also increasing BBB penetration of therapeutic antibodies. The goal of this pilot clinical trial was to investigate the safety and efficacy of this approach in patients with mild AD using an implantable ultrasound device. METHODS: An implantable, 1-MHz ultrasound device (SonoCloud-1) was implanted under local anesthesia in the skull (extradural) of 10 mild AD patients to target the left supra-marginal gyrus. Over 3.5 months, seven ultrasound sessions in combination with intravenous infusion of microbubbles were performed twice per month to temporarily disrupt the BBB. 18F-florbetapir and 18F-fluorodeoxyglucose positron emission tomography (PET) imaging were performed on a combined PET/MRI scanner at inclusion and at 4 and 8 months after the initiation of sonications to monitor the brain metabolism and amyloid levels along with cognitive evaluations. The evolution of cognitive and neuroimaging features was compared to that of a matched sample of control participants taken from the Alzheimer's Disease Neuroimaging Initiative (ADNI). RESULTS: A total of 63 BBB opening procedures were performed in nine subjects. The procedure was well-tolerated. A non-significant decrease in amyloid accumulation at 4 months of - 6.6% (SD = 7.2%) on 18F-florbetapir PET imaging in the sonicated gray matter targeted by the ultrasound transducer was observed compared to baseline in six subjects that completed treatments and who had evaluable imaging scans. No differences in the longitudinal change in the glucose metabolism were observed compared to the neighboring or contralateral regions or to the change observed in the same region in ADNI participants. No significant effect on cognition evolution was observed in comparison with the ADNI participants as expected due to the small sample size and duration of the trial. CONCLUSIONS: These results demonstrate the safety of ultrasound-based BBB disruption and the potential of this technology to be used as a therapy for AD patients. Research of this technique in a larger clinical trial with a device designed to sonicate larger volumes of tissue and in combination with disease-modifying drugs may further enhance the effects observed. TRIAL REGISTRATION: ClinicalTrials.gov, NCT03119961.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/metabolismo , Doença de Alzheimer/terapia , Barreira Hematoencefálica/diagnóstico por imagem , Barreira Hematoencefálica/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Disfunção Cognitiva/metabolismo , Humanos , Neuroimagem/métodos , Projetos Piloto , Tomografia por Emissão de Pósitrons/métodos
15.
Prog Neurobiol ; 206: 102139, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34391810

RESUMO

Alzheimer's disease is the most common form of dementia characterized by intracellular aggregates of hyperphosphorylated Tau protein and extracellular accumulation of amyloid ß (Aß) peptides. We previously demonstrated that the purinergic receptor P2X7 (P2X7) plays a major role in Aß-mediated neurodegeneration but the relationship between P2X7 and Tau remained overlooked. Such a link was supported by cortical upregulation of P2X7 in patients with various type of frontotemporal lobar degeneration, including mutation in the Tau-coding gene, MAPT, as well as in the brain of a Tauopathy mouse model (THY-Tau22). Subsequent phenotype analysis of P2X7-deficient Tau mice revealed the instrumental impact of this purinergic receptor. Indeed, while P2X7-deficiency had a moderate effect on Tau pathology itself, we observed a significant reduction of microglia activation and of Tau-related inflammatory mediators, particularly CCL4. Importantly, P2X7 deletion ultimately rescued synaptic plasticity and memory impairments of Tau mice. Altogether, the present data support a contributory role of P2X7 dysregulation on processes governing Tau-induced brain anomalies. Due to the convergent role of P2X7 blockade in both Aß and Tau background, P2X7 inhibitors might prove to be ideal candidate drugs to curb the devastating cognitive decline in Alzheimer's disease and Tauopathies.


Assuntos
Doença de Alzheimer , Receptores Purinérgicos P2X7/deficiência , Tauopatias , Doença de Alzheimer/genética , Peptídeos beta-Amiloides , Animais , Cognição , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Transgênicos , Tauopatias/genética , Proteínas tau/genética
16.
Neuroimage ; 51(2): 586-98, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20206704

RESUMO

Biomarkers and technologies similar to those used in humans are essential for the follow-up of Alzheimer's disease (AD) animal models, particularly for the clarification of mechanisms and the screening and validation of new candidate treatments. In humans, changes in brain metabolism can be detected by 1-deoxy-2-[(18)F] fluoro-D-glucose PET (FDG-PET) and assessed in a user-independent manner with dedicated software, such as Statistical Parametric Mapping (SPM). FDG-PET can be carried out in small animals, but its resolution is low as compared to the size of rodent brain structures. In mouse models of AD, changes in cerebral glucose utilization are usually detected by [(14)C]-2-deoxyglucose (2DG) autoradiography, but this requires prior manual outlining of regions of interest (ROI) on selected sections. Here, we evaluate the feasibility of applying the SPM method to 3D autoradiographic data sets mapping brain metabolic activity in a transgenic mouse model of AD. We report the preliminary results obtained with 4 APP/PS1 (64+/-1 weeks) and 3 PS1 (65+/-2 weeks) mice. We also describe new procedures for the acquisition and use of "blockface" photographs and provide the first demonstration of their value for the 3D reconstruction and spatial normalization of post mortem mouse brain volumes. Despite this limited sample size, our results appear to be meaningful, consistent, and more comprehensive than findings from previously published studies based on conventional ROI-based methods. The establishment of statistical significance at the voxel level, rather than with a user-defined ROI, makes it possible to detect more reliably subtle differences in geometrically complex regions, such as the hippocampus. Our approach is generic and could be easily applied to other biomarkers and extended to other species and applications.


Assuntos
Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/metabolismo , Mapeamento Encefálico/métodos , Encéfalo/diagnóstico por imagem , Glucose/metabolismo , Doença de Alzheimer/genética , Precursor de Proteína beta-Amiloide/genética , Animais , Autorradiografia , Encéfalo/metabolismo , Radioisótopos de Carbono , Desoxiglucose , Modelos Animais de Doenças , Processamento de Imagem Assistida por Computador , Camundongos , Camundongos Transgênicos , Tomografia por Emissão de Pósitrons , Presenilina-1/genética , Compostos Radiofarmacêuticos
17.
MAGMA ; 23(1): 53-64, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20066469

RESUMO

OBJECT: The brain of patients with Alzheimer's disease (AD) is characterized by the presence of amyloid plaques and neurofibrillary tangles. Vascular alterations such as amyloid angiopathy are also commonly reported in patients with AD and participate in mechanisms involved in disease onset and progression. Transgenic mouse models of AD have been engineered to evaluate the pathophysiology and new treatments of the disease. Our study evaluated vascular alterations in APP(SweLon)/PS1(M146L) mouse model of AD. MATERIALS AND METHODS: Histological analysis and in vivo magnetic resonance angiography protocols based on time of flight (TOF) and contrast-enhanced (CE) angiography were applied to evaluate cerebrovascular alterations. Results Histological analysis showed that cerebrovascular amyloid deposition starts by the same time as extracellular amyloid plaques. However, unlike plaques deposition, severity of cerebrovascular alterations is stabilized in older animals. Alteration of the middle cerebral artery was detected in old APP(SweLon)/PS1(M146L) mice with respect to adult ones by evaluating the severity of vessel voids and the reduction of vessel length on TOF- and CE-angiograms. Age-related alterations in control PS1 mice were only detected as a reduced vessel length on CE-angiograms. CONCLUSION: These results show that macroscopic vascular abnormalities are part of the pathological alterations developed by APP(SweLon)/PS1(M146L) mouse models of AD.


Assuntos
Doença de Alzheimer/diagnóstico , Doença de Alzheimer/patologia , Modelos Animais de Doenças , Angiografia por Ressonância Magnética , Fatores Etários , Doença de Alzheimer/metabolismo , Animais , Angiopatia Amiloide Cerebral/diagnóstico , Angiopatia Amiloide Cerebral/metabolismo , Angiopatia Amiloide Cerebral/patologia , Transtornos Cerebrovasculares/diagnóstico , Transtornos Cerebrovasculares/metabolismo , Transtornos Cerebrovasculares/patologia , Camundongos , Camundongos Transgênicos , Artéria Cerebral Média/metabolismo , Artéria Cerebral Média/patologia
18.
J Alzheimers Dis ; 76(4): 1339-1345, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32623401

RESUMO

BACKGROUND: Masitinib is a selective tyrosine kinase inhibitor that modulates mast cells activity. A previous phase II study reported a cognitive effect of masitinib in patients with Alzheimer's disease. OBJECTIVE: We aimed to shed light on the mode of action of masitinib in Alzheimer's disease. METHODS/RESULTS: We demonstrated here that chronic oral treatment of APPswe/PSEN1dE9 transgenic mice modeling Alzheimer's disease restored normal spatial learning performance while having no impacts on amyloid-ß loads nor on neuroinflammation. However, masitinib promoted a recovery of synaptic markers. Complete genetic depletion of mast cells in APPswe/PSEN1dE9 mice similarly rescued synaptic impairments. CONCLUSION: These results underline that masitinib therapeutic efficacy might primarily be associated with a synapto-protective action in relation with mast cells inhibition.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Cognição/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Tiazóis/farmacologia , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/farmacologia , Precursor de Proteína beta-Amiloide/genética , Animais , Benzamidas , Modelos Animais de Doenças , Masculino , Camundongos Transgênicos , Piperidinas , Presenilina-1/genética , Presenilina-1/farmacologia , Piridinas , Tiazóis/administração & dosagem
19.
Elife ; 92020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32452382

RESUMO

Studies have suggested that amyloid precursor protein (APP) regulates synaptic homeostasis, but the evidence has not been consistent. In particular, signaling pathways controlling APP transport to the synapse in axons and dendrites remain to be identified. Having previously shown that Huntingtin (HTT), the scaffolding protein involved in Huntington's disease, regulates neuritic transport of APP, we used a microfluidic corticocortical neuronal network-on-a-chip to examine APP transport and localization to the pre- and post-synaptic compartments. We found that HTT, upon phosphorylation by the Ser/Thr kinase Akt, regulates APP transport in axons but not dendrites. Expression of an unphosphorylatable HTT decreased axonal anterograde transport of APP, reduced presynaptic APP levels, and increased synaptic density. Ablating in vivo HTT phosphorylation in APPPS1 mice, which overexpress APP, reduced presynaptic APP levels, restored synapse number and improved learning and memory. The Akt-HTT pathway and axonal transport of APP thus regulate APP presynaptic levels and synapse homeostasis.


Assuntos
Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Proteína Huntingtina/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sinapses/metabolismo , Animais , Transporte Axonal , Encéfalo/diagnóstico por imagem , Modelos Animais de Doenças , Homeostase , Imageamento por Ressonância Magnética , Masculino , Memória , Camundongos Transgênicos , Técnicas Analíticas Microfluídicas , Teste do Labirinto Aquático de Morris , Fosforilação
20.
Br J Pharmacol ; 177(5): 1106-1118, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31652355

RESUMO

BACKGROUND AND PURPOSE: Excessive GABAergic inhibition contributes to cognitive dysfunctions in Down syndrome (DS). Selective negative allosteric modulators (NAMs) of α5-containing GABAA receptors such as the α5 inverse agonist (α5IA) restore learning and memory deficits in Ts65Dn mice, a model of DS. In this study we have assessed the long-lasting effects of α5IA on in vivo LTP and behaviour in Ts65Dn mice. EXPERIMENTAL APPROACH: We made in vivo LTP recordings for six consecutive days in freely moving Ts65Dn mice and their wild-type littermates, treated with vehicle or α5IA. In parallel, Ts65Dn mice were assessed by various learning and memory tests (Y maze, Morris water maze, or the novel object recognition) for up to 7 days, following one single injection of α5IA or vehicle. KEY RESULTS: LTP was not evoked in vivo in Ts65Dn mice at hippocampal CA3-CA1 synapses. However, this deficit was sustainably reversed for at least six consecutive days following a single injection of α5IA. This long-lasting effect of α5IA was also observed when assessing working and long-term memory deficits in Ts65Dn mice. CONCLUSION AND IMPLICATIONS: We show for the first time in vivo LTP deficits in Ts65Dn mice. These deficits were restored for at least 6 days following acute treatment with α5IA and might be the substrate for the long-lasting pharmacological effects of α5IA on spatial working and long-term recognition and spatial memory tasks. Our results demonstrate the relevance of negative allosteric modulators of α5-containing GABAA receptors to the treatment of cognitive deficits associated with DS.


Assuntos
Disfunção Cognitiva , Síndrome de Down , Agonistas de Receptores de GABA-A/farmacologia , Potenciação de Longa Duração , Animais , Cognição , Modelos Animais de Doenças , Síndrome de Down/tratamento farmacológico , Aprendizagem em Labirinto , Camundongos , Receptores de GABA-A , Ácido gama-Aminobutírico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA