Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Nano Lett ; 24(38): 11839-11846, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39268715

RESUMO

Exciton-polaritons, hybrid light-matter excitations arising from the strong coupling between excitons in semiconductors and photons in photonic nanostructures, are crucial for exploring the physics of quantum fluids of light and developing all-optical devices. Achieving room temperature propagation of polaritons with a large excitonic fraction is challenging but vital, e.g., for nonlinear light transport. We report on room temperature propagation of exciton-polaritons in a metasurface made from a subwavelength lattice of perovskite pillars. The large Rabi splitting, much greater than the optical phonon energy, decouples the lower polariton band from the phonon bath of the perovskite. These cooled polaritons, in combination with the high group velocity achieved through the metasurface design, enable long-range propagation, exceeding hundreds of micrometers even with an 80% excitonic component. Furthermore, the design of the metasurface introduces an original mechanism for unidirectional propagation through polarization control, suggesting a new avenue for the development of advanced polaritonic devices.

2.
Nano Lett ; 23(10): 4152-4159, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37130341

RESUMO

Friedrich-Wintgen (FW) interference is an atypical coupling mechanism that grants loss exchange between leaky resonances in non-Hermitian classical and quantum systems. Intriguingly, such a mechanism makes destructive interference possible for scenarios in which a radiating wave becomes a bound state in the continuum (BIC) by giving away all of its losses. Here we propose and demonstrate experimentally an original concept to tailor FW-BICs with polarization singularity at on-demand wavevectors in an optical metasurface. As a proof-of-concept, using hybrid organic-inorganic halide perovskite as an active material, we empower this novel polarization singularity to obtain lasing emission, exhibiting both highly directional emission at oblique angles and a polarization vortex in momentum space. Our results pave the way to steerable coherent emission with a tailored polarization pattern for applications in optical communication/manipulation in free space, high-resolution imaging/focusing, and data storage.

3.
Nano Lett ; 22(5): 2065-2069, 2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35192357

RESUMO

The large tolerance of hybrid perovksites to the trapping of electrons by defects is a key asset in photovoltaic applications. Here, the ionic surface terminations of CH3NH3PbI3 are employed as a testbed to study the effect of electrostatic fields on the dynamics of excited carriers. We characterize the transition across the tetragonal to orthorhombic phase. The observed type II band offset and drift of the excited electrons highlight the important role that organic cations have on the screening of local electrostatic fields. When the orientation of organic cations is frozen in the orthorhombic phase, the positively charged termination induces a massive accumulation of excited electrons at the surface of the sample. Conversely, no electron accumulation is observed in the tetragonal phase. We conclude that the local fields cannot penetrate in the sample when the polarizability of freely moving cations boosts the dielectric constant up to ε = 120.

4.
Nat Mater ; 20(10): 1315-1324, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34211156

RESUMO

Lead-halide perovskites are generally excellent light emitters and can have larger exciton binding energies than thermal energy at room temperature, exhibiting great promise for room-temperature exciton-polaritonics. Rapid progress has been made recently, although challenges and mysteries remain in lead-halide perovskite semiconductors to push polaritons to room-temperature operation. In this Perspective, we discuss fundamental aspects of perovskite semiconductors for exciton-polaritons and review the recent rapid experimental advances using lead-halide perovskites for room-temperature polaritonics, including the experimental realization of strong light-matter interaction using various types of microcavities as well as reaching the polariton condensation regime in planar microcavities and lattices.

5.
Nano Lett ; 20(3): 2113-2119, 2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-32074449

RESUMO

Exciton-polaritons represent a promising platform for studying quantum fluids of light and realizing prospective all-optical devices. Here we report on the experimental demonstration of exciton-polaritons at room temperature in resonant metasurfaces made from a sub-wavelength two-dimensional lattice of perovskite pillars. The strong coupling regime is revealed by both angular-resolved reflectivity and photoluminescence measurements, showing anticrossing between photonic modes and the exciton resonance with a Rabi splitting in the 200 meV range. Moreover, by tailoring the photonic Bloch mode to which perovskite excitons are coupled, polaritonic dispersions are engineered exhibiting linear, parabolic, and multivalley dispersions. All of our results are perfectly reproduced by both numerical simulations based on a rigorous coupled wave analysis and an elementary model based on a quantum theory of radiation-matter interaction. Our results suggest a new approach to study exciton-polaritons and pave the way toward large-scale and low-cost integrated polaritonic devices operating at room temperature.

6.
Opt Express ; 28(26): 39739-39749, 2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-33379517

RESUMO

Random lasing is an intriguing phenomenon occurring in disordered structures with optical gain in which light scattering provides the necessary feedback for lasing action. Unlike conventional lasers, random lasing systems emit in all directions due to light scattering. While this property can be desired in some cases, directional emission remains required for most applications. In a vertical microcavity containing the hybrid perovskite CH3NH3PbBr3, we report here the coupling of the emission of a random laser with a cavity polaritonic resonance, resulting in a directional random lasing, whose emission angles can be tuned by varying the cavity detuning and reach values as large as 15.8° and 22.4°.

7.
Opt Express ; 26(2): A153-A156, 2018 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-29401905

RESUMO

This joint Optics Express and Optical Materials Express feature issue presents a collection of nine papers on the topic of halide perovskites for optoelectronics. Perovskite materials have attracted significant attention over the past four years, initially for their outstanding performance in thin film solar cells, but more recently for applications in light-emitting devices (LEDs and lasers), photodetectors and nonlinear optics. At the same time, there is still much more to learn about the fundamental properties of these materials, and how these depend on composition, processing, and exposure to the environment. This feature issue provides a snapshot of some of the latest research in this rapidly-evolving multidisciplinary field.

8.
Phys Chem Chem Phys ; 18(39): 27133-27142, 2016 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-27722277

RESUMO

We report on 207Pb, 79Br, 14N, 1H, 13C and 2H NMR experiments for studying the local order and dynamics in hybrid perovskite lattices. 207Pb NMR experiments conducted at room temperature on a series of MAPbX3 compounds (MA = CH3NH3+; X = Cl, Br and I) showed that the isotropic 207Pb NMR shift is strongly dependent on the nature of the halogen ions. Therefore 207Pb NMR appears to be a very promising tool for the characterisation of local order in mixed halogen hybrid perovskites. 207Pb NMR on MAPbBr2I served as a proof of concept. Proton, 13C and 14N NMR experiments confirmed the results previously reported in the literature. Low temperature deuterium NMR measurements, down to 25 K, were carried out to investigate the structural phase transitions of MAPbBr3. Spectral lineshapes allow following the successive phase transitions of MAPbBr3. Finally, quadrupolar NMR lineshapes recorded in the orthorhombic phase were compared with simulated spectra, using DFT calculated electric field gradients (EFG). Computed data do not take into account any temperature effect. Thus, the discrepancy between the calculated and experimental EFG evidences the fact that MA cations are still subject to significant dynamics, even at 25 K.

9.
Molecules ; 21(7)2016 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-27399669

RESUMO

Investigating the stability and evaluating the quality of the CH3NH3PbI3 perovskite structures is quite critical both to the design and fabrication of high-performance perovskite devices and to fundamental studies of the photophysics of the excitons. In particular, it is known that, under ambient conditions, CH3NH3PbI3 degrades producing some PbI2. We show here that low temperature Photoluminescence (PL) spectroscopy is a powerful tool to detect PbI2 traces in hybrid perovskite layers and single crystals. Because PL spectroscopy is a signal detection method on a black background, small PbI2 traces can be detected, when other methods currently used at room temperature fail. Our study highlights the extremely high stability of the single crystals compared to the thin layers and defects and grain boundaries are thought to play an important role in the degradation mechanism.


Assuntos
Compostos de Cálcio/análise , Óxidos/análise , Espectrometria de Fluorescência/métodos , Titânio/análise , Compostos de Cálcio/química , Temperatura Baixa , Luminescência , Medições Luminescentes , Óxidos/química , Espectrometria de Fluorescência/instrumentação , Titânio/química
10.
Nanoscale Adv ; 6(6): 1704-1719, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38482026

RESUMO

Perovskite nanocrystals have attracted much attention in the last ten years due to their different applications, especially in the photovoltaic domain and LED performance. In this large family of perovskite nanocrystals, CsPbBr3 nanocrystals are attractive nanomaterials because they are good candidates for obtaining green emissions and exploring new synthesis routes. In this context, controlling the nanometric scale's morphology, particularly the size and monodispersity, is fundamental for exploring their photophysical properties and final applications. Currently, the nanometric size of nanocrystals is ensured by the presence of oleic acid and oleylamine molecules, in using Hot Injection (HI) or ligand-assisted reprecipitation (LARP) methods. If oleic acid plays a fundamental role, oleylamine can be easily substituted by other amino molecules, opening the way for the functionalization of CsPbBr3 nanocrystals and the obtention of new hybrid perovskite nanocrystal families. In this article, we describe the synthesis, by soft chemistry, of a new family of hybrid organic-inorganic CsPbBr3 nanocrystals, functionalized by aryl-alkylamine (AAA) molecules, through the modified LARP method. We highlight the mechanism for cutting submicron crystals into nanocrystals, using aryl-alkylamine molecules like scissors. The impact of these amino molecules on the final nanocrystals leads to different nanocrystal morphologies (nanocubes, nanosheets, or nanorods) and structures (monoclinic, rhombohedral, or tetragonal). In addition, this modified LARP method highlights, under certain experimental conditions, an unexpected formation of PbO ribbons.

11.
Phys Rev Lett ; 111(13): 137402, 2013 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-24116816

RESUMO

The variation of the optical absorption of carbon nanotubes with their geometry has been a long-standing question at the heart of both metrological and applicative issues, in particular because optical spectroscopy is one of the primary tools for the assessment of the chiral species abundance of samples. Here, we tackle the chirality dependence of the optical absorption with an original method involving ultraefficient energy transfer in porphyrin-nanotube compounds that allows uniform photoexcitation of all chiral species. We measure the absolute absorption cross section of a wide range of semiconducting nanotubes at their S22 transition and show that it varies by up to a factor of 2.2 with the chiral angle, with type I nanotubes showing a larger absorption. In contrast, the luminescence quantum yield remains almost constant.

12.
Opt Lett ; 37(24): 5061-3, 2012 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-23258005

RESUMO

We report on the fabrication of a perovskite-based ((C6H5C2H4 - NH3)2 PbI4) planar microcavity with a technique of a top dielectric mirror's migration in liquid, avoiding the degradation of the perovskite material. This approach allows for increasing the cavity Q-factor, without degrading the fragile molecular material. Strong coupling of the perovskite exciton to both the cavity mode and the first Bragg mode is evidenced from angle-resolved reflectivity and microphotoluminescence measurements at room temperature; an efficient relaxation toward the minimum of the main polariton branch is observed. The measured quality factor is significantly increased compared to previous reports where a top metallic mirror was used, showing the decisive advantage of the present fabrication technique toward the achievement of stimulated effects and polariton lasing with perovskite materials.

13.
Nanomaterials (Basel) ; 12(9)2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35564108

RESUMO

In this work, we studied, at low temperature, the coherent evolution of the localized electron and hole spins in a polycrystalline film of CH3NH3PbI3 (MAPI) by using a picosecond-photo-induced Faraday rotation technique in an oblique magnetic field. We observed an unexpected anisotropy for the electron and hole spin. We determined the electron and hole Landé factors when the magnetic field was applied in the plane of the film and perpendicular to the exciting light, denoted as transverse ⟂ factors, and when the magnetic field was applied perpendicular to the film and parallel to the exciting light, denoted as parallel ∥ factors. We obtained |ge,⟂|=2.600 ± 0.004, |ge,∥|=1.604 ± 0.033 for the electron and |gh,⟂|=0.406 ± 0.002, |gh,∥|=0.299 ± 0.007 for the hole. Possible origins of this anisotropy are discussed herein.

14.
Chem Commun (Camb) ; 58(40): 5960-5963, 2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35475432

RESUMO

A new synthetic method for preparing highly calibrated CsPbBr3 nanocrystal perovskites is described and analyzed using high-resolution scanning transmission electron microscopy. This new method based on soft chemistry leads to the large-scale production of nanocrystals. Such monodisperse nanocrystals allow for the deposition of homogeneous films, which provides new opportunities for the next generation of optoelectronic devices.

15.
J Phys Chem Lett ; 12(34): 8272-8279, 2021 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-34425051

RESUMO

We investigated the coherent evolution of the electronic spin at low temperature in high-quality CH3NH3PbI3 polycrystalline films by picosecond-resolved photoinduced Faraday rotation. We show that this coherent evolution can be tuned by choosing the pump-probe energy within the lowest optical-absorption band, and we explain it as the result of two main contributions: the localized electron and the localized hole. Their corresponding amplitude ratios are not constant across the lowest absorption band-an observation which disqualifies a free exciton from being at the origin of the electronic spin coherent evolution. We measured a spin coherence time of localized electrons (holes) of 4.4 ns (3.7 ns) at 1.635 eV, which evolves to about 7 ns at 1.612 eV (the hole coherence time remains almost constant at lower energies). Finally, we provide a global image of the spin coherent evolution in bulk metal halide perovskite, which overcomes recent controversies.

16.
Mater Horiz ; 8(5): 1547-1560, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-34846463

RESUMO

Taking advantage of an innovative design concept for layered halide perovskites with active chromophores acting as organic spacers, we present here the synthesis of two novel two-dimensional (2D) hybrid organic-inorganic halide perovskites incorporating for the first time 100% of a photoactive tetrazine derivative as the organic component. Namely, the use of a heterocyclic ring containing a nitrogen proportion imparts a unique electronic structure to the organic component, with the lowest energy optical absorption in the blue region. The present compound, a tetrazine, presents several resonances between the organic and inorganic components, both in terms of single particle electronic levels and exciton states, providing the ideal playground to discuss charge and energy transfer mechanisms at the organic/inorganic interface. Photophysical studies along with hybrid time-dependent DFT simulations demonstrate partial energy transfer and rationalise the suppressed emission from the perovskite frame in terms of different energy-transfer diversion channels, potentially involving both singlet and triplet states of the organic spacer. Periodic DFT simulations also support the feasibility of electron transfer from the conduction band of the inorganic component to the LUMO of the spacer as a potential quenching mechanism, suggesting the coexistence and competition of charge and energy transfer mechanisms in these heterostructures. Our work proves the feasibility of inserting photoactive small rings in a 2D perovskite structure, meanwhile providing a robust frame to rationalize the electronic interactions between the semiconducting inorganic layer and organic chromophores, with the prospects of optimizing the organic moiety according to the envisaged application.

17.
Chemphyschem ; 11(8): 1667-72, 2010 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-20373509

RESUMO

We report on a new, original and efficient method for pi-stacking functionalization of single-wall carbon nanotubes. This method is applied to the synthesis of a high-yield light-harvesting system combining single-wall carbon nanotubes and porphyrin molecules. We developed a micelle-swelling technique that leads to controlled and stable complexes presenting an efficient energy transfer. We demonstrate the key role of the organic solvent in the functionalization mechanism. By swelling the micelles, the solvent helps the non-water-soluble porphyrins to reach the micelle core and allows a strong enhancement of the interaction between porphyrins and nanotubes. This technique opens new avenues for the functionalization of carbon nanostructures.

18.
J Phys Chem Lett ; 11(15): 5830-5835, 2020 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-32597181

RESUMO

The family of 2D Ruddlesden-Popper perovskites is currently attracting great interest of the scientific community as highly promising materials for energy harvesting and light emission applications. Despite the fact that these materials are known for decades, only recently has it become apparent that their optical properties are driven by the exciton-phonon coupling, which is controlled by the organic spacers. However, the detailed mechanism of this coupling, which gives rise to complex absorption and emission spectra, is the subject of ongoing controversy. In this work we show that the particularly rich, absorption spectra of (PEA)2(CH3NH3)n-1PbnI3n+1 (where PEA stands for phenylethylammonium and n = 1, 2, 3), are related to a vibronic progression of excitonic transition. In contrast to other two-dimensional perovskites, we observe a coupling to a high-energy (40 meV) phonon mode probably related to the torsional motion of the NH3+ head of the organic spacer.

19.
J Phys Chem Lett ; 10(17): 5153-5159, 2019 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-31415177

RESUMO

Recently, Ruddlesden-Popper 2D perovskite (RPP) solar cells and light-emitting diodes (LEDs) have shown promising efficiencies and improved stability in comparison to 3D halide perovskites. Here, the exciton recombination dynamics is investigated at room temperature in pure-phase RPP crystals (C6H5C2H4NH3)2(CH3NH3)n-1PbnI3n+1 (n = 1, 2, 3, and 4) by time-resolved photoluminescence (TRPL) in a large range of power excitations. As the number of perovskite layers increases, we detect the presence of an increasing fraction of out-of-equilibrium free carriers just after photoexcitation, on a picosecond time scale, while the dynamics is characterized by the recombination of excitons with long lifetime spanning several tens of nanoseconds. At low excitation power, the TRPL decays are nonexponential because of defect-assisted recombination. At high fluence, defects are filled and many-body interactions become important. Similar to other 2D systems, exciton-exciton annihilation (EEA) is then the dominant recombination path in a high-density regime below the Mott transition.

20.
J Phys Chem Lett ; 8(13): 2977-2983, 2017 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-28608691

RESUMO

Understanding the surface properties of organic-inorganic lead-based perovskites is of high importance to improve the device's performance. Here, we have investigated the differences between surface and bulk optical properties of CH3NH3PbBr3 single crystals. Depth-resolved cathodoluminescence was used to probe the near-surface region on a depth of a few microns. In addition, we have studied the transmitted luminescence through thicknesses between 50 and 600 µm. In both experiments, the expected spectral shift due to the reabsorption effect has been precisely calculated. We demonstrate that reabsorption explains the important variations reported for the emission energy of single crystals. Single crystals are partially transparent to their own luminescence, and radiative transport is the dominant mechanism for propagation of the excitation in thick crystals. The transmitted luminescence dynamics are characterized by a long rise time and a lengthening of their decay due to photon recycling and light trapping.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA