Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Development ; 149(17)2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35938454

RESUMO

Schwann cells (SCs) migrate along peripheral axons and divide intensively to generate the right number of cells prior to axonal ensheathment; however, little is known regarding the temporal and molecular control of their division and its impact on myelination. We report that Sil, a spindle pole protein associated with autosomal recessive primary microcephaly, is required for temporal mitotic exit of SCs. In sil-deficient cassiopeia (csp-/-) mutants, SCs fail to radially sort and myelinate peripheral axons. Elevation of cAMP, but not Rac1 activity, in csp-/- restores myelin ensheathment. Most importantly, we show a significant decrease in laminin expression within csp-/- posterior lateral line nerve and that forcing Laminin 2 expression in csp-/- fully restores the ability of SCs to myelinate. Thus, we demonstrate an essential role for timely SC division in mediating laminin expression to orchestrate radial sorting and peripheral myelination in vivo.


Assuntos
Laminina , Células de Schwann , Axônios/metabolismo , Divisão Celular/genética , Células Cultivadas , Laminina/genética , Laminina/metabolismo , Bainha de Mielina/metabolismo , Células de Schwann/metabolismo
2.
Dev Dyn ; 252(1): 145-155, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36284447

RESUMO

BACKGROUND: Schwann cells (SCs) are specialized glial cells of the peripheral nervous system that produce myelin and promote fast action potential propagation. In order to myelinate, SCs engage in a series of events that include migration and division along axons, followed by extensive cytoskeletal rearrangements that ensure axonal ensheathment and myelination. SCs are polarized and extend their processes along an abaxonal-adaxonal axis. Here, we investigate the role of the apical polarity proteins, Pals1a, and aPKCλ, in SC behavior during zebrafish development. RESULTS: We analyzed zebrafish nok and has mutants deficient for pals1a and aPKCλ function respectively. Using live imaging, transmission electron microscopy and whole mount immunostaining, we show that SCs can migrate and divide appropriately, exhibit normal radial sorting, express myelin markers and ensheath axons on time in has and nok mutants. CONCLUSIONS: Pals1a and aPKCλ are not essential for SC migration, division or myelination in zebrafish.


Assuntos
Bainha de Mielina , Peixe-Zebra , Animais , Bainha de Mielina/metabolismo , Células de Schwann , Axônios/metabolismo , Neurogênese , Movimento Celular/fisiologia
3.
Sci Rep ; 11(1): 13338, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-34172795

RESUMO

The Regulator of G protein signaling 4 (Rgs4) is a member of the RGS proteins superfamily that modulates the activity of G-protein coupled receptors. It is mainly expressed in the nervous system and is linked to several neuronal signaling pathways; however, its role in neural development in vivo remains inconclusive. Here, we generated and characterized a rgs4 loss of function model (MZrgs4) in zebrafish. MZrgs4 embryos showed motility defects and presented reduced head and eye sizes, reflecting defective motoneurons axon outgrowth and a significant decrease in the number of neurons in the central and peripheral nervous system. Forcing the expression of Rgs4 specifically within motoneurons rescued their early defective outgrowth in MZrgs4 embryos, indicating an autonomous role for Rgs4 in motoneurons. We also analyzed the role of Akt, Erk and mechanistic target of rapamycin (mTOR) signaling cascades and showed a requirement for these pathways in motoneurons axon outgrowth and neuronal development. Drawing on pharmacological and rescue experiments in MZrgs4, we provide evidence that Rgs4 facilitates signaling mediated by Akt, Erk and mTOR in order to drive axon outgrowth in motoneurons and regulate neuronal numbers.


Assuntos
Neurônios Motores/metabolismo , Neurogênese/fisiologia , Crescimento Neuronal/fisiologia , Proteínas RGS/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Peixe-Zebra/metabolismo , Animais , Axônios/metabolismo , Neurônios Eferentes/metabolismo , Transdução de Sinais/fisiologia
4.
J Steroid Biochem Mol Biol ; 104(3-5): 293-300, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17428656

RESUMO

Evidence that endogenous progesterone (PROG) is neuroprotective after traumatic brain injury (TBI) is supported by the findings that pseudopregnant female rats present less edema and achieve better functional recovery than do male rats. PROG in the nervous system may originate from steroidogenic glands or can be locally synthesized. 3beta-Hydroxysteroid dehydrogenase/5-ene-4-ene isomerase (3beta-HSD) is the key enzyme in the biosynthesis of PROG. In the present study, we investigated the effects of pseudopregnancy and TBI on brain 3beta-HSD mRNA expression and on PROG levels. Twenty-four hours after bilateral contusion of the medial prefrontal cortex of rats, 3beta-HSD mRNA expression was analyzed by in situ hybridization while PROG levels were measured by gas chromatography/mass spectrometry. Similar levels of 3beta-HSD mRNA expression were observed in males and pseudopregnant females in the non-injured groups. At this time point, there was a significant decrease in the 3beta-HSD mRNA expression in the contusion site within the frontal cortex in both males and pseudopregnant females. In all other regions analyzed, 3beta-HSD mRNA expression was not affected by TBI and there was no difference between males and pseudopregnant females. The high decrease in the expression of the 3beta-HSD mRNA in the lesion site 24 h after TBI suggests a possible decrease in locally synthesized PROG in lesion site without change in the other brain regions. This decrease has less impact in pseudopregnant females since they have high plasmatic and brain levels of PROG compared to males.


Assuntos
Lesões Encefálicas/enzimologia , Encéfalo/enzimologia , Complexos Multienzimáticos/genética , Progesterona Redutase/genética , Pseudogravidez/enzimologia , Esteroide Isomerases/genética , Animais , Encéfalo/metabolismo , Química Encefálica , Lesões Encefálicas/patologia , Feminino , Regulação Enzimológica da Expressão Gênica , Masculino , Modelos Biológicos , Complexos Multienzimáticos/metabolismo , Progesterona/análise , Progesterona/sangue , Progesterona Redutase/metabolismo , Pseudogravidez/patologia , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Esteroide Isomerases/metabolismo
5.
Neuropharmacology ; 97: 394-403, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26079443

RESUMO

Progesterone is a potential neuroprotective agent for cerebral stroke. One of the STAIR's recommendations is to test different routes of delivery of therapeutic agents. Here, we investigated the neuroprotective efficacy of intranasal delivery of progesterone in oleogel. Male mice were subjected to transient middle cerebral occlusion (MCAO) for 1 h. Mice received intranasal or intraperitoneal administrations of progesterone (8 mg/kg) at 1, 6, and 24 h post-MCAO. Plasma and brain levels of steroids were measured by gas chromatography-mass spectrometry 2 and 24 h after the last administration of progesterone. Behavioral and histopathological analyzes were performed at 48 h post-MCAO. For blood-brain barrier (BBB) permeability analysis, mice received one intranasal administration of progesterone or placebo at reperfusion and Evans Blue and sodium fluorescein extravasations were assessed at 4 h post-MCAO. Two hours after its nasal administration, progesterone reached elevated levels in brain and plasma and was bioconverted to its 5α-reduced metabolites and to 20α-dihydroprogesterone. However, brain levels of progesterone and its metabolites were about half those measured after intraperitoneal injections, whereas levels of 11-deoxycorticosterone and corticosterone were 5-times lower. In contrast, after 24 h, higher levels of progesterone were measured in brain and plasma after intranasal than after intraperitoneal delivery. Intranasal progesterone decreased the mortality rate, improved motor functions, reduced infarct, attenuated neuronal loss, and decreased the early BBB disruption. This study demonstrates a good bioavailability, a prolonged absorption and a good neuroprotective efficacy of intranasal delivery of progesterone, thus potentially offering an efficient, safe, non-stressful and very easy mode of administration in stroke patients.


Assuntos
Isquemia Encefálica/tratamento farmacológico , Encéfalo/efeitos dos fármacos , Fármacos Neuroprotetores/administração & dosagem , Progesterona/administração & dosagem , Acidente Vascular Cerebral/tratamento farmacológico , Administração Intranasal , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Isquemia Encefálica/metabolismo , Isquemia Encefálica/mortalidade , Permeabilidade Capilar/efeitos dos fármacos , Permeabilidade Capilar/fisiologia , Corticosterona/metabolismo , Modelos Animais de Doenças , Infarto da Artéria Cerebral Média , Injeções Intraperitoneais , Masculino , Camundongos Endogâmicos C57BL , Distribuição Aleatória , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/mortalidade
6.
Endocrinology ; 153(8): 3747-57, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22635678

RESUMO

Progesterone receptors (PR) are expressed throughout the brain. However, their functional significance remains understudied. Here we report a novel role of PR as crucial mediators of neuroprotection using a model of transient middle cerebral artery occlusion and PR knockout mice. Six hours after ischemia, we observed a rapid increase in progesterone and 5α-dihydroprogesterone, the endogenous PR ligands, a process that may be a part of the natural neuroprotective mechanisms. PR deficiency, and even haploinsufficiency, increases the susceptibility of the brain to stroke damage. Within a time window of 24 h, PR-dependent signaling of endogenous brain progesterone limits the extent of tissue damage and the impairment of motor functions. Longer-term improvement requires additional treatment with exogenous progesterone and is also PR dependent. The potent and selective PR agonist Nestorone is also effective. In contrast to progesterone, levels of the neurosteroid allopregnanolone, which modulates γ-aminobutyric acid type A receptors, did not increase after stroke, but its administration protected both wild-type and PR-deficient mice against ischemic damage. These results show that 1) PR are linked to signaling pathways that influence susceptibility to stroke, and 2) PR are direct key targets for both endogenous neuroprotection and for therapeutic strategies after stroke, and they suggest a novel indication for synthetic progestins already validated for contraception. Although allopregnanolone may not be an endogenous neuroprotective agent, its administration protects the brain against ischemic damage by signaling mechanisms not involving PR. Collectively, our data clarify the relative roles of PR and allopregnanolone in neuroprotection after stroke.


Assuntos
Receptores de Progesterona/metabolismo , Acidente Vascular Cerebral/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Masculino , Camundongos , Camundongos Knockout , Norprogesteronas/farmacologia , Norprogesteronas/uso terapêutico , Pregnanolona/farmacologia , Pregnanolona/uso terapêutico , Progesterona/farmacologia , Progesterona/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/prevenção & controle
7.
J Neurochem ; 93(5): 1314-26, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15934950

RESUMO

After traumatic brain injury, progesterone has important neuroprotective effects in the nervous system. There is better functional outcome and less oedema formation in pseudopregnant rat females (high levels of endogenous progesterone) than in males. In addition to intracellular progesterone receptors, membrane binding sites of the hormone such as 25-Dx may also be involved in neuroprotection. In the present study we investigated the distribution of the membrane-associated progesterone-binding protein 25-Dx in rat brain. Immunohistochemical analysis showed that 25-Dx is particularly abundant in the hypothalamic area, circumventricular organs, and ependymal cells of the lateral walls of the third and lateral ventricles. A strong signal was also detected in the meninges. Double immunofluorescence immunolabelling and confocal microscopy showed that 25-Dx is co-expressed with vasopressin in neurones of the paraventricular, supraoptic and retrochiasmatic nuclei. Levels of 25-Dx expression were higher in pseudopregnant females than in males. After traumatic brain injury, 25-Dx expression was up-regulated in neurones and induced in astrocytes, which play an important role in regulating water and ion homeostasis. The expression of 25-Dx in structures involved in CSF production (choroid plexus) and in osmoregulation (circumventricular organs, hypothalamus and meninges), and its up-regulation after brain damage, point to a novel and potentially important role of this progesterone-binding protein in the maintenance of water homeostasis after traumatic brain injury.


Assuntos
Lesões Encefálicas/metabolismo , Encéfalo/metabolismo , Proteínas de Transporte/metabolismo , Homeostase , Água/metabolismo , Animais , Feminino , Masculino , Proteínas de Membrana , Fenótipo , Pseudogravidez/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de Progesterona , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Distribuição Tecidual , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA