Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Chemosphere ; 287(Pt 2): 132111, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34507147

RESUMO

The mining district of Salsigne in the Orbiel valley (Aude, France) was at one time the first gold mine in Europe and the first arsenic mine in the world. However, no scientific studies have evaluated the magnitude of its environmental impact. In this study, the pedo-geochemical background (PGB) was determined for 14 metal (loid) elements, including As. It appears that the PGB values for As and Sb are relatively high with 44±12 and 0.9±1.2 mg kg-1, respectively, because of the geological particularities of this area. In a second step, these PGB values (normalized with Ti concentrations) were used as local references to determine enrichment factors (EFs) of bed river sediments for the Orbiel River and two of its major tributaries (Gresillou and Russec rivers) collected between November 2018 and July 2020. Results showed that riverine sediments are contaminated by past mining activity and/or current storage areas. If we except the major elements (Fe, Ti and at a lesser extent Mn), we observed that As, Cu, Sb, Pb present the highest concentrations relative to the remaining elements (Cd, Co, V, Ni and Cr). In the case of As, EFs can reach 74 in the Orbiel River, 1000 in the Gresillou River and 27 in the Russec River. These calculations were also performed for sediments transported by the extreme flood of October 14, 2018, that killed 15 people and potentially remobilized contamination in the valley. We observed that the As concentrations of suspended samples from Grésillou and Russec rivers have reached 870 mg kg-1. Finally, the As concentrations measured in the river sediments of this valley are of the same order of magnitude than those published in the literature for environments strongly impacted by mining or mineral processing activities.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Monitoramento Ambiental , Sedimentos Geológicos , Humanos , Metais Pesados/análise , Mineração , Rios , Poluentes Químicos da Água/análise
2.
Sci Total Environ ; 852: 158460, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36063937

RESUMO

Phytoliths are microscopic structures made of amorphous opal (opal-A), an amorphous hydrated silica, dispersed within plant tissues and persisting after the decay of the plant. Silicon is known to alleviate metal toxicity in plants, but the role of phytoliths in metal sequestration and detoxification is unclear. Dry ashing, the most common protocol for phytolith extraction, was previously shown to lead to sequestration of metals by the phytoliths; however, the mechanisms of this process remained elusive. The purpose of this study was to evaluate whether the association between metals and phytoliths results from dry ashing or pre-exists in plant tissues. Thus, we compared phytoliths extracted by dry ashing at 700 °C and plant leaves before and after dry ashing. A combination of ICP-MS, XRD, SEM-EDX and Zn-K-edge EXAFS spectroscopy was used to assess elemental concentrations, morphology and crystallography of silica, and chemical status of Zn. Results demonstrated a phase transition from amorphous opal (opal-A) to opal-CT and α-cristobalite, and the sequestration of metal in phytoliths during dry ashing. For Zn, Mn and Pb, a linear relationship was found between the concentration in phytoliths and in leaves. In the phytoliths, Zn was sequestered in silica in tetrahedral configuration. We hypothesize that this association results form a solid-state reaction during ashing, involving a redistribution of Zn from the organic material to the silica, possibly promoted by the release of structural water from amorphous opal throughout the heating procedure. This study improves our understanding of the impact of high temperature treatments on plant biomass and phytoliths. It suggests that Zn toxicity alleviation in plants by silicon does not rely on its sequestration by phytoliths. In natural settings, wild fire events and biomass burning may lead to metal sequestration in low-soluble form, which should be considered in modeling of biogeochemical cycles and in paleoenvironmental studies.


Assuntos
Silício , Zinco , Chumbo , Plantas/química , Dióxido de Silício/química , Água
3.
Sci Total Environ ; 712: 135595, 2020 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-31818547

RESUMO

In Southern Europe, soil contamination by heavy metals (HM) due to mining and industrial activities is a long-known problem. Yet, despite soils being widely contaminated through decades, some plants are still able to grow. Some of these plants, like giant reed (Arundo donax) or common reed (Phragmites australis) are capable of accumulating substantial amount of HM. These reeds also contain small silica structures in their shoots, called phytoliths. However, the role of phytoliths in reducing stress caused by these HM remains unknown. The aim of this work is then to determine if phytoliths represent a preferential structure for the bioacccumulation of HM in plants. Therefore, plants from mining-contaminated sites in Spain and France were sampled and HM concentrations in total plant shoots were compared to those in phytoliths for eight metal(oid)s: As, Cd, Cu, Mn, Pb, Sb, Sn and Zn. Results show that Arundo donax and Phragmites australis tend to accumulate Cd, Sb and Sn but limit the uptake of As, Cu, Mn, Pb and Zn in plant shoots despite that the concentration of these HM in soil is quite high. Therefore, reeds appear as tolerant to high metal concentrations in soils, and phytoliths are identified as preferential structures for encapsulation of As, Cu, Mn, Pb and Zn, while Cd, Sb and Sn were mainly found to be accumulated in organic tissues rather than in phytoliths.


Assuntos
Metais Pesados/análise , Biodegradação Ambiental , França , Mineração , Solo , Poluentes do Solo , Espanha
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA