Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 151(6): 1214-28, 2012 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-23177352

RESUMO

Developmental gene expression results from the orchestrated interplay between genetic and epigenetic mechanisms. Here, we describe upSET, a transcriptional regulator encoding a SET domain-containing protein recruited to active and inducible genes in Drosophila. However, unlike other Drosophila SET proteins associated with gene transcription, UpSET is part of an Rpd3/Sin3-containing complex that restricts chromatin accessibility and histone acetylation to promoter regions. In the absence of UpSET, active chromatin marks and chromatin accessibility increase and spread to genic and flanking regions due to destabilization of the histone deacetylase complex. Consistent with this, transcriptional noise increases, as manifest by activation of repetitive elements and off-target genes. Interestingly, upSET mutant flies are female sterile due to upregulation of key components of Notch signaling during oogenesis. Thus UpSET defines a class of metazoan transcriptional regulators required to fine tune transcription by preventing the spread of active chromatin.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Histona Desacetilases/metabolismo , Regiões Promotoras Genéticas , Acetilação , Animais , Cromatina , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Feminino , Técnicas de Silenciamento de Genes , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Camundongos , Mutação
2.
Immunity ; 45(2): 389-401, 2016 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-27521269

RESUMO

CD8(+) T cells recognizing tumor-specific antigens are detected in cancer patients but are dysfunctional. Here we developed a tamoxifen-inducible liver cancer mouse model with a defined oncogenic driver antigen (SV40 large T-antigen) to follow the activation and differentiation of naive tumor-specific CD8(+) T (TST) cells after tumor initiation. Early during the pre-malignant phase of tumorigenesis, TST cells became dysfunctional, exhibiting phenotypic, functional, and transcriptional features similar to dysfunctional T cells isolated from late-stage human tumors. Thus, T cell dysfunction seen in advanced human cancers may already be established early during tumorigenesis. Although the TST cell dysfunctional state was initially therapeutically reversible, it ultimately evolved into a fixed state. Persistent antigen exposure rather than factors associated with the tumor microenvironment drove dysfunction. Moreover, the TST cell differentiation and dysfunction program exhibited features distinct from T cell exhaustion in chronic infections. Strategies to overcome this antigen-driven, cell-intrinsic dysfunction may be required to improve cancer immunotherapy.


Assuntos
Antígenos Transformantes de Poliomavirus/imunologia , Linfócitos T CD8-Positivos/imunologia , Vacinas Anticâncer/imunologia , Imunoterapia Adotiva/métodos , Neoplasias Hepáticas/imunologia , Animais , Carcinogênese , Diferenciação Celular , Células Cultivadas , Senescência Celular , Modelos Animais de Doenças , Humanos , Neoplasias Hepáticas/induzido quimicamente , Neoplasias Hepáticas/terapia , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Tamoxifeno , Microambiente Tumoral
3.
PLoS Genet ; 16(12): e1009186, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33306674

RESUMO

Cells are exposed to frequent mechanical and/or chemical stressors that can compromise the integrity of the plasma membrane and underlying cortical cytoskeleton. The molecular mechanisms driving the immediate repair response launched to restore the cell cortex and circumvent cell death are largely unknown. Using microarrays and drug-inhibition studies to assess gene expression, we find that initiation of cell wound repair in the Drosophila model is dependent on translation, whereas transcription is required for subsequent steps. We identified 253 genes whose expression is up-regulated (80) or down-regulated (173) in response to laser wounding. A subset of these genes were validated using RNAi knockdowns and exhibit aberrant actomyosin ring assembly and/or actin remodeling defects. Strikingly, we find that the canonical insulin signaling pathway controls actin dynamics through the actin regulators Girdin and Chickadee (profilin), and its disruption leads to abnormal wound repair. Our results provide new insight for understanding how cell wound repair proceeds in healthy individuals and those with diseases involving wound healing deficiencies.


Assuntos
Actinas/metabolismo , Comunicação Autócrina , Insulina/metabolismo , Transdução de Sinais , Cicatrização , Animais , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Profilinas/genética , Profilinas/metabolismo , Transcriptoma
4.
Mol Syst Biol ; 17(6): e9522, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34101353

RESUMO

Single-cell RNA sequencing has emerged as a powerful tool for resolving cellular states associated with normal and maligned developmental processes. Here, we used scRNA-seq to examine the cell cycle states of expanding human neural stem cells (hNSCs). From these data, we constructed a cell cycle classifier that identifies traditional cell cycle phases and a putative quiescent-like state in neuroepithelial-derived cell types during mammalian neurogenesis and in gliomas. The Neural G0 markers are enriched with quiescent NSC genes and other neurodevelopmental markers found in non-dividing neural progenitors. Putative glioblastoma stem-like cells were significantly enriched in the Neural G0 cell population. Neural G0 cell populations and gene expression are significantly associated with less aggressive tumors and extended patient survival for gliomas. Genetic screens to identify modulators of Neural G0 revealed that knockout of genes associated with the Hippo/Yap and p53 pathways diminished Neural G0 in vitro, resulting in faster G1 transit, down-regulation of quiescence-associated markers, and loss of Neural G0 gene expression. Thus, Neural G0 represents a dynamic quiescent-like state found in neuroepithelial-derived cells and gliomas.


Assuntos
Glioblastoma , Células-Tronco Neurais , Animais , Ciclo Celular/genética , Divisão Celular , Humanos , Neurogênese/genética
5.
J Immunol ; 194(4): 1677-85, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25582857

RESUMO

All aerobic cells and organisms must synthesize heme from the amino acid glycine and the tricarboxylic acid cycle intermediate succinyl CoA for incorporation into hemoproteins, such as the cytochromes needed for oxidative phosphorylation. Most studies on heme regulation have been done in erythroid cells or hepatocytes; however, much less is known about heme metabolism in other cell types. The feline leukemia virus subgroup C receptor (FLVCR) is a 12-transmembrane domain surface protein that exports heme from cells, and it was shown to be required for erythroid development. In this article, we show that deletion of Flvcr in murine hematopoietic precursors caused a complete block in αß T cell development at the CD4(+)CD8(+) double-positive stage, although other lymphoid lineages were not affected. Moreover, FLVCR was required for the proliferation and survival of peripheral CD4(+) and CD8(+) T cells. These studies identify a novel and unexpected role for FLVCR, a major facilitator superfamily metabolite transporter, in T cell development and suggest that heme metabolism is particularly important in the T lineage.


Assuntos
Diferenciação Celular/imunologia , Heme/imunologia , Proteínas de Membrana Transportadoras/imunologia , Receptores Virais/imunologia , Linfócitos T/imunologia , Transferência Adotiva , Animais , Separação Celular , Sobrevivência Celular/imunologia , Citometria de Fluxo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
6.
EMBO J ; 30(7): 1289-301, 2011 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-21343912

RESUMO

Transcriptional cofactors are essential for proper embryonic development. One such cofactor in Drosophila, Degringolade (Dgrn), encodes a RING finger/E3 ubiquitin ligase. Dgrn and its mammalian ortholog RNF4 are SUMO-targeted ubiquitin ligases (STUbLs). STUbLs bind to SUMOylated proteins via their SUMO interaction motif (SIM) domains and facilitate substrate ubiquitylation. In this study, we show that Dgrn is a negative regulator of the repressor Hairy and its corepressor Groucho (Gro/transducin-like enhancer (TLE)) during embryonic segmentation and neurogenesis, as dgrn heterozygosity suppresses Hairy mutant phenotypes and embryonic lethality. Mechanistically Dgrn functions as a molecular selector: it targets Hairy for SUMO-independent ubiquitylation that inhibits the recruitment of its corepressor Gro, without affecting the recruitment of its other cofactors or the stability of Hairy. Concomitantly, Dgrn specifically targets SUMOylated Gro for sequestration and antagonizes Gro functions in vivo. Our findings suggest that by targeting SUMOylated Gro, Dgrn serves as a molecular switch that regulates cofactor recruitment and function during development. As Gro/TLE proteins are conserved universal corepressors, this may be a general paradigm used to regulate the Gro/TLE corepressors in other developmental processes.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/antagonistas & inibidores , Proteínas de Drosophila/antagonistas & inibidores , Proteínas de Drosophila/metabolismo , Drosophila/crescimento & desenvolvimento , Proteínas Repressoras/antagonistas & inibidores , Ubiquitina-Proteína Ligases/metabolismo , Animais , Regulação da Expressão Gênica no Desenvolvimento , Sumoilação
7.
Nat Genet ; 36(3): 304-12, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-14981515

RESUMO

We developed a versatile, high-throughput genetic screening strategy by coupling gene mutagenesis and expression profiling technologies. Using a retroviral gene-trap vector optimized for efficient mutagenesis and cloning, we randomly disrupted genes in mouse embryonic stem (ES) cells and amplified them to construct a cDNA microarray. With this gene-trap array, we show that transcriptional target genes of platelet-derived growth factor (PDGF) can be efficiently and reliably identified in physiologically relevant cells and are immediately accessible to genetic studies to determine their in vivo roles and relative contributions to PDGF-regulated developmental processes. The same platform can be used to search for genes of specific biological relevance in a broad array of experimental settings, providing a fast track from gene identification to functional validation.


Assuntos
Perfilação da Expressão Gênica , Mutagênese , Fator de Crescimento Derivado de Plaquetas/genética , Animais , Sequência de Bases , Células Cultivadas , Clonagem Molecular , Vetores Genéticos , Camundongos , Retroviridae/genética , Células-Tronco/metabolismo
8.
Nat Genet ; 32(3): 438-42, 2002 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12355067

RESUMO

Replication of the genome before mitotic cell division is a highly regulated process that ensures the fidelity of DNA duplication. DNA replication initiates at specific locations, termed origins of replication, and progresses in a defined temporal order during the S phase of the cell cycle. The relationship between replication timing and gene expression has been the subject of some speculation. A recent genome-wide analysis in Saccharomyces cerevisiae showed no association between replication timing and gene expression. In higher eukaryotes, the limited number of genomic loci analyzed has not permitted a firm conclusion regarding this association. To explore the relationship between DNA replication and gene expression in higher eukaryotes, we developed a strategy to measure the timing of DNA replication for thousands of genes in a single DNA array hybridization experiment. Using this approach, we generated a genome-wide map of replication timing for Drosophila melanogaster. Moreover, by surveying over 40% of all D. melanogaster genes, we found a strong correlation between DNA replication early in S phase and transcriptional activity. As this correlation does not exist in S. cerevisiae, this interplay between DNA replication and transcription may be a unique characteristic of higher eukaryotes.


Assuntos
Replicação do DNA , Drosophila melanogaster/genética , Transcrição Gênica , Animais , Bromodesoxiuridina/farmacologia , Ciclo Celular , Separação Celular , DNA Complementar/metabolismo , Citometria de Fluxo , Genoma , Hibridização de Ácido Nucleico , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase , Testes de Precipitina , Fase S , Fatores de Tempo
9.
EMBO J ; 27(11): 1563-74, 2008 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-18451802

RESUMO

In response to stimuli that activate p53, cells can undergo either apoptosis or cell cycle arrest, depending on the precise pattern of p53 target genes that is activated. We show here that Zbtb4, a transcriptional repressor protein, associates with the Sin3/histone deacetylase co-repressor and represses expression of P21CIP1 as part of a heterodimeric complex with Miz1. In vivo, expression of ZBTB4 is downregulated in advanced stages of multiple human tumours. In cell culture, depletion of ZBTB4 promotes cell cycle arrest in response to activation of p53 and suppresses apoptosis through regulation of P21CIP1, thereby promoting long-term cell survival. Our data suggest that Zbtb4 is a critical determinant of the cellular response to p53 activation and reinforce the notion that p21Cip1 can provide an essential survival signal in cells with activated p53.


Assuntos
Inibidor de Quinase Dependente de Ciclina p21/genética , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica , Proteínas Repressoras/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Apoptose , Ciclo Celular , Criança , Proteínas de Ligação a DNA/genética , Regulação para Baixo , Humanos , Fatores de Transcrição Kruppel-Like/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Regiões Promotoras Genéticas , Proteínas Repressoras/genética , Complexo Correpressor Histona Desacetilase e Sin3 , Fatores de Transcrição/metabolismo , Transcrição Gênica , Células Tumorais Cultivadas
10.
J Immunother Cancer ; 10(2)2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35210305

RESUMO

BACKGROUND: Achieving robust responses with adoptive cell therapy for the treatment of the highly lethal pancreatic ductal adenocarcinoma (PDA) has been elusive. We previously showed that T cells engineered to express a mesothelin-specific T cell receptor (TCRMsln) accumulate in autochthonous PDA, mediate therapeutic antitumor activity, but fail to eradicate tumors in part due to acquisition of a dysfunctional exhausted T cell state. METHODS: Here, we investigated the role of immune checkpoints in mediating TCR engineered T cell dysfunction in a genetically engineered PDA mouse model. The fate of engineered T cells that were either deficient in PD-1, or transferred concurrent with antibodies blocking PD-L1 and/or additional immune checkpoints, were tracked to evaluate persistence, functionality, and antitumor activity at day 8 and day 28 post infusion. We performed RNAseq on engineered T cells isolated from tumors and compared differentially expressed genes to prototypical endogenous exhausted T cells. RESULTS: PD-L1 pathway blockade and/or simultaneous blockade of multiple coinhibitory receptors during adoptive cell therapy was insufficient to prevent engineered T cell dysfunction in autochthonous PDA yet resulted in subclinical activity in the lung, without enhancing anti-tumor immunity. Gene expression analysis revealed that ex vivo TCR engineered T cells markedly differed from in vivo primed endogenous effector T cells which can respond to immune checkpoint inhibitors. Early after transfer, intratumoral TCR engineered T cells acquired a similar molecular program to prototypical exhausted T cells that arise during chronic viral infection, but the molecular programs later diverged. Intratumoral engineered T cells exhibited decreased effector and cell cycle genes and were refractory to TCR signaling. CONCLUSIONS: Abrogation of PD-1 signaling is not sufficient to overcome TCR engineered T cell dysfunction in PDA. Our study suggests that contributions by both the differentiation pathways induced during the ex vivo T cell engineering process and intratumoral suppressive mechanisms render engineered T cells dysfunctional and resistant to rescue by blockade of immune checkpoints.


Assuntos
Inibidores de Checkpoint Imunológico/uso terapêutico , Neoplasias Pancreáticas/tratamento farmacológico , Linfócitos T/metabolismo , Animais , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Camundongos , Neoplasias Pancreáticas
11.
Nat Commun ; 12(1): 4217, 2021 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-34244513

RESUMO

The functional consequences of genetic variants within 5' untranslated regions (UTRs) on a genome-wide scale are poorly understood in disease. Here we develop a high-throughput multi-layer functional genomics method called PLUMAGE (Pooled full-length UTR Multiplex Assay on Gene Expression) to quantify the molecular consequences of somatic 5' UTR mutations in human prostate cancer. We show that 5' UTR mutations can control transcript levels and mRNA translation rates through the creation of DNA binding elements or RNA-based cis-regulatory motifs. We discover that point mutations can simultaneously impact transcript and translation levels of the same gene. We provide evidence that functional 5' UTR mutations in the MAP kinase signaling pathway can upregulate pathway-specific gene expression and are associated with clinical outcomes. Our study reveals the diverse mechanisms by which the mutational landscape of 5' UTRs can co-opt gene expression and demonstrates that single nucleotide alterations within 5' UTRs are functional in cancer.


Assuntos
Regiões 5' não Traduzidas/genética , Análise Mutacional de DNA/métodos , Regulação Neoplásica da Expressão Gênica , Genômica/métodos , Neoplasias da Próstata/genética , Linhagem Celular Tumoral , Células HEK293 , Ensaios de Triagem em Larga Escala , Humanos , Masculino , Mutação Puntual , Próstata/patologia , Neoplasias da Próstata/patologia , Biossíntese de Proteínas/genética , RNA-Seq
12.
Biochemistry ; 49(16): 3367-80, 2010 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-20178373

RESUMO

After relaxation of superhelical stress by various methods not involving topoisomerases, a long-lived metastable secondary structure with an anomalously low torsion elastic constant commonly prevails. The aim here is to ascertain whether such metastable secondary structure also results from the action of calf-thymus topoisomerase I (CT Topo I) on a native supercoiled DNA and, if so, whether the enzyme catalyzes its subsequent equilibration. The action of CT Topo I on supercoiled p30delta DNA was examined over a range of times from 10 min to 6 h. We verify that the enzyme operates in an almost completely processive manner, and at each time point determine the twist energy parameter, E(T), that governs the supercoiling free energy. E(T) is initially low, 533 +/- 60, and remains essentially constant up to at least 360 min, when no further CT Topo I is added. The activity of the rather dilute enzyme dies within approximately 60 min. During the 60 min after a second addition of fresh enzyme at either 60 or 120 min, E(T) rises up to a plateau at approximately 1100, which lies within the consensus equilibrium range, 1000 +/- 100. Over that same time period, the average peak spacing between the gel bands (corresponding to individual topoisomers) decreases somewhat with increasing time of exposure to active CT Topo I. After a third addition of fresh CT Topo I at 240 min, there is no further change in either E(T) or the average gel spacing. These and other observations indicate that active CT Topo I catalyzes the equilibration of a metastable secondary structure with abnormally low torsion and bending elastic constants that prevails after the initial release of superhelical stress. An observed temporal lag of this structural equilibration behind the relaxation of native superhelical DNAs suggests that it may require cleavage and religation events at multiple sites on the DNA. A novel analysis of the unwinding kinetics using literature data accounts for the almost complete processivity of the enzyme. The action of CT Topo I was also examined in the presence of 20 and 40 w/v% ethylene glycol (EG), which shift a secondary structure equilibrium toward an alternative state with altered torsion and bending elastic constants. The present results suggest that the usual metastable state coexists with the EG-induced state, and is equilibrated more rapidly than in the absence of EG.


Assuntos
DNA Topoisomerases Tipo I/química , DNA Topoisomerases Tipo I/metabolismo , Estrutura Secundária de Proteína , Timo/enzimologia , Animais , Bovinos , DNA Super-Helicoidal/química , DNA Super-Helicoidal/metabolismo , Elasticidade , Estabilidade Enzimática , Cinética , Conformação Proteica , Espectrometria de Fluorescência , Estresse Mecânico
13.
Mol Cell Biol ; 27(18): 6396-406, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17636020

RESUMO

Hydroxyurea (HU) is a DNA replication inhibitor that negatively affects both the elongation and initiation phases of replication and triggers the "intra-S phase checkpoint." Previous work with budding yeast has shown that, during a short exposure to HU, MEC1/RAD53 prevent initiation at some late S phase origins. In this study, we have performed microarray experiments to follow the fate of all origins over an extended exposure to HU. We show that the genome-wide progression of DNA synthesis, including origin activation, follows the same pattern in the presence of HU as in its absence, although the time frames are very different. We find no evidence for a specific effect that excludes initiation from late origins. Rather, HU causes S phase to proceed in slow motion; all temporal classes of origins are affected, but the order in which they become active is maintained. We propose a revised model for the checkpoint response to HU that accounts for the continued but slowed pace of the temporal program of origin activation.


Assuntos
Replicação do DNA/efeitos dos fármacos , DNA Fúngico/biossíntese , Hidroxiureia/farmacologia , Proteínas de Ciclo Celular/metabolismo , Quinase do Ponto de Checagem 2 , Genoma Fúngico , Peptídeos e Proteínas de Sinalização Intracelular , Modelos Biológicos , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas Serina-Treonina Quinases/metabolismo , Origem de Replicação , Fase S/efeitos dos fármacos , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Tempo
14.
Dev Biol ; 315(2): 303-16, 2008 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-18241851

RESUMO

Myc oncoproteins are essential regulators of the growth and proliferation of mammalian cells. In Drosophila the single ortholog of Myc (dMyc), encoded by the dm gene, influences organismal size and the growth of both mitotic and endoreplicating cells. A null mutation in dm results in attenuated endoreplication and growth arrest early in larval development. Drosophila also contains a single ortholog of the mammalian Mad/Mnt transcriptional repressor proteins (dMnt), which is thought to antagonize dMyc function. Here we show that animals lacking both dMyc and dMnt display increased viability and grow significantly larger and develop further than dMyc single mutants. We observe increased endoreplication and growth of larval tissues in these double mutants and disproportionate growth of the imaginal discs. Gene expression analysis indicates that loss of dMyc leads to decreased expression of genes required for ribosome biogenesis and protein synthesis. The additional loss of dMnt partially rescues expression of a small number of dMyc and dMnt genes that are primarily involved in rRNA synthesis and processing. Our results indicate that dMnt repression is normally overridden by dMyc activation during larval development. Therefore the severity of the dm null phenotype is likely due to unopposed repression by dMnt on a subset of genes critical for cell and organismal growth. Surprisingly, considerable growth and development can occur in the absence of both dMyc and dMnt.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Drosophila/crescimento & desenvolvimento , Drosophila/genética , Genes de Insetos , Mutação , Proteínas Repressoras/genética , Fatores de Transcrição/genética , Animais , Sequência de Bases , Fatores de Transcrição Hélice-Alça-Hélice Básicos/deficiência , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Primers do DNA/genética , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/fisiologia , Drosophila/fisiologia , Proteínas de Drosophila/deficiência , Proteínas de Drosophila/fisiologia , Feminino , Deleção de Genes , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Larva/crescimento & desenvolvimento , Masculino , Metamorfose Biológica , Fenótipo , Proteínas Repressoras/fisiologia , Transdução de Sinais , Fatores de Transcrição/deficiência , Fatores de Transcrição/fisiologia , Asas de Animais/crescimento & desenvolvimento
15.
Genetics ; 180(4): 1833-47, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18832352

RESUMO

Temporal regulation of origin activation is widely thought to explain the pattern of early- and late-replicating domains in the Saccharomyces cerevisiae genome. Recently, single-molecule analysis of replication suggested that stochastic processes acting on origins with different probabilities of activation could generate the observed kinetics of replication without requiring an underlying temporal order. To distinguish between these possibilities, we examined a clb5Delta strain, where origin firing is largely limited to the first half of S phase, to ask whether all origins nonspecifically show decreased firing (as expected for disordered firing) or if only some origins ("late" origins) are affected. Approximately half the origins in the mutant genome show delayed replication while the remainder replicate largely on time. The delayed regions can encompass hundreds of kilobases and generally correspond to regions that replicate late in wild-type cells. Kinetic analysis of replication in wild-type cells reveals broad windows of origin firing for both early and late origins. Our results are consistent with a temporal model in which origins can show some heterogeneity in both time and probability of origin firing, but clustering of temporally like origins nevertheless yields a genome that is organized into blocks showing different replication times.


Assuntos
Cromossomos Fúngicos/genética , Ciclina B/genética , Replicação do DNA , Genoma Fúngico , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Ciclina B/metabolismo , DNA Fúngico/genética , DNA Fúngico/metabolismo , Modelos Genéticos , Mutação , Fase S , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
16.
Mol Cell Biol ; 26(16): 6117-29, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16880522

RESUMO

The packaging of DNA into chromatin allows eukaryotic cells to organize and compact their genomes but also creates an environment that is generally repressive to nuclear processes that depend upon DNA accessibility. There are several classes of enzymes that modulate the primary structure of chromatin to regulate various DNA-dependent processes. The biochemical activities of the yeast Isw1 ATP-dependent chromatin-remodeling enzyme have been well characterized in vitro, but little is known about how these activities are utilized in vivo. In this work, we sought to discern genetic backgrounds that require Isw1 activity for normal growth. We identified a three-way genetic interaction among Isw1, the NuA4 histone acetyltransferase complex, and the Swr1 histone replacement complex. Transcription microarray analysis revealed parallel functions for these three chromatin-modifying factors in the regulation of TATA-containing genes, including the repression of a large number of stress-induced genes under normal growth conditions. In contrast to a recruitment-based model, we find that the NuA4 and Swr1 complexes act throughout the genome while only a specific subset of the genome shows alterations in transcription.


Assuntos
Acetiltransferases/metabolismo , Adenosina Trifosfatases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação para Baixo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Acetilação , Acetiltransferases/deficiência , Adenosina Trifosfatases/deficiência , Montagem e Desmontagem da Cromatina/genética , Proteínas de Ligação a DNA/deficiência , Regulação para Baixo/efeitos dos fármacos , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Genoma Fúngico/genética , Histona Acetiltransferases , Histonas/metabolismo , Lisina/metabolismo , Testes de Sensibilidade Microbiana , Mutação/genética , Regiões Promotoras Genéticas/genética , Transporte Proteico , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/efeitos dos fármacos , Sirolimo/farmacologia , Fatores de Transcrição/metabolismo , Transcrição Gênica
17.
Genome Med ; 11(1): 14, 2019 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-30867038

RESUMO

It was highlighted that in the original article [1] the Availability of data and materials section was incorrect.

18.
Nat Commun ; 10(1): 4596, 2019 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-31601799

RESUMO

Many of the regulatory features governing erythrocyte specification, maturation, and associated disorders remain enigmatic. To identify new regulators of erythropoiesis, we utilize a functional genomic screen for genes affecting expression of the erythroid marker CD235a/GYPA. Among validating hits are genes coding for the N6-methyladenosine (m6A) mRNA methyltransferase (MTase) complex, including, METTL14, METTL3, and WTAP. We demonstrate that m6A MTase activity promotes erythroid gene expression programs through selective translation of ~300 m6A marked mRNAs, including those coding for SETD histone methyltransferases, ribosomal components, and polyA RNA binding proteins. Remarkably, loss of m6A marks results in dramatic loss of H3K4me3 marks across key erythroid-specific KLF1 transcriptional targets (e.g., Heme biosynthesis genes). Further, each m6A MTase subunit and a subset of their mRNAs targets are required for human erythroid specification in primary bone-marrow derived progenitors. Thus, m6A mRNA marks promote the translation of a network of genes required for human erythropoiesis.


Assuntos
Adenosina/análogos & derivados , Eritropoese/genética , Biossíntese de Proteínas , Adenosina/genética , Antígenos CD34/genética , Antígenos CD34/metabolismo , Células da Medula Óssea/fisiologia , Sistemas CRISPR-Cas , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Regulação da Expressão Gênica , Histonas/genética , Histonas/metabolismo , Humanos , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Leucemia Eritroblástica Aguda/genética , Metiltransferases/genética , Regiões Promotoras Genéticas , Fatores de Processamento de RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Regulon
19.
Nat Med ; 25(10): 1566-1575, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31591594

RESUMO

The ability to expand hematopoietic stem and progenitor cells (HSPCs) ex vivo is critical to fully realize the potential of HSPC-based therapies. In particular, the application of clinically effective therapies, such as cord blood transplantation, has been impeded because of limited HSPC availability. Here, using 3D culture of human HSPCs in a degradable zwitterionic hydrogel, we achieved substantial expansion of phenotypically primitive CD34+ cord blood and bone-marrow-derived HSPCs. This culture system led to a 73-fold increase in long-term hematopoietic stem cell (LT-HSC) frequency, as demonstrated by limiting dilution assays, and the expanded HSPCs were capable of hematopoietic reconstitution for at least 24 weeks in immunocompromised mice. Both the zwitterionic characteristics of the hydrogel and the 3D format were important for HSPC self-renewal. Mechanistically, the impact of 3D zwitterionic hydrogel culture on mitigating HSPC differentiation and promoting self-renewal might result from an inhibition of excessive reactive oxygen species (ROS) production via suppression of O2-related metabolism. HSPC expansion using zwitterionic hydrogels has the potential to facilitate the clinical application of hematopoietic-stem-cell therapies.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Terapia Baseada em Transplante de Células e Tecidos , Células-Tronco Hematopoéticas/citologia , Hidrogéis/farmacologia , Animais , Antígenos CD34/metabolismo , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Técnicas de Cultura de Células , Proliferação de Células/efeitos dos fármacos , Técnicas de Cocultura , Sangue Fetal/citologia , Sangue Fetal/metabolismo , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/metabolismo , Humanos , Camundongos , Espécies Reativas de Oxigênio/metabolismo
20.
Neuron ; 38(4): 567-80, 2003 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-12765609

RESUMO

Glia are the most abundant cell type in the mammalian brain. They regulate neuronal development and function, CNS immune surveillance, and stem cell biology, yet we know surprisingly little about glia in any organism. Here we identify over 40 new Drosophila glial genes. We use glial cells missing (gcm) mutants and misexpression to verify they are Gcm regulated in vivo. Many genes show unique spatiotemporal responsiveness to Gcm in the CNS, and thus glial subtype diversification requires spatially or temporally restricted Gcm cofactors. These genes provide insights into glial biology: we show unc-5 (a repulsive netrin receptor) orients glial migrations and the draper gene mediates glial engulfment of apoptotic neurons and larval locomotion. Many identified Drosophila glial genes have homologs expressed in mammalian glia, revealing conserved molecular features of glial cells. 80% of these Drosophila glial genes have mammalian homologs; these are now excellent candidates for regulating human glial development, function, or disease.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Neuroglia/imunologia , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Transativadores/genética , Transativadores/metabolismo , Animais , Diferenciação Celular/fisiologia , Linhagem da Célula/fisiologia , Proteínas de Ligação a DNA , Drosophila/genética , Drosophila/crescimento & desenvolvimento , Proteínas de Drosophila , Larva/citologia , Larva/fisiologia , Macrófagos/imunologia , Receptores de Netrina , Neuroglia/citologia , Análise de Sequência com Séries de Oligonucleotídeos , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Fatores de Transcrição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA