Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
RNA ; 20(12): 1963-76, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25336583

RESUMO

Modulation of mRNA translatability either by trans-acting factors (proteins or sRNAs) or by in cis-acting riboregulators is widespread in bacteria and controls relevant phenotypic traits. Unfortunately, global identification of post-transcriptionally regulated genes is complicated by poor structural and functional conservation of regulatory elements and by the limitations of proteomic approaches in protein quantification. We devised a genetic system for the identification of post-transcriptionally regulated genes and we applied this system to search for Pseudomonas aeruginosa RNA thermometers, a class of regulatory RNA that modulates gene translation in response to temperature changes. As P. aeruginosa is able to thrive in a broad range of environmental conditions, genes differentially expressed at 37 °C versus lower temperatures may be involved in infection and survival in the human host. We prepared a plasmid vector library with translational fusions of P. aeruginosa DNA fragments (PaDNA) inserted upstream of TIP2, a short peptide able to inactivate the Tet repressor (TetR) upon expression. The library was assayed in a streptomycin-resistant merodiploid rpsL(+)/rpsL31 Escherichia coli strain in which the dominant rpsL(+) allele, which confers streptomycin sensitivity, was repressed by TetR. PaDNA fragments conferring thermosensitive streptomycin resistance (i.e., expressing PaDNA-TIP2 fusions at 37°C, but not at 28°C) were sequenced. We identified four new putative thermosensors. Two of them were validated with conventional reporter systems in E. coli and P. aeruginosa. Interestingly, one regulates the expression of ptxS, a gene implicated in P. aeruginosa pathogenesis.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Ligação a DNA/genética , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Fosfotransferases (Aceptor do Grupo Fosfato)/genética , RNA Bacteriano/biossíntese , RNA Mensageiro/biossíntese , Fatores de Transcrição/genética , Escherichia coli/genética , Resposta ao Choque Térmico/genética , Humanos , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/crescimento & desenvolvimento , RNA Bacteriano/genética , RNA Mensageiro/genética , Proteína S9 Ribossômica , Temperatura
2.
Nucleic Acids Res ; 39(17): 7702-15, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-21685451

RESUMO

S1 is an 'atypical' ribosomal protein weakly associated with the 30S subunit that has been implicated in translation, transcription and control of RNA stability. S1 is thought to participate in translation initiation complex formation by assisting 30S positioning in the translation initiation region, but little is known about its role in other RNA transactions. In this work, we have analysed in vivo the effects of different intracellular S1 concentrations, from depletion to overexpression, on translation, decay and intracellular distribution of leadered and leaderless messenger RNAs (mRNAs). We show that the cspE mRNA, like the rpsO transcript, may be cleaved by RNase E at multiple sites, whereas the leaderless cspE transcript may also be degraded via an alternative pathway by an unknown endonuclease. Upon S1 overexpression, RNase E-dependent decay of both cspE and rpsO mRNAs is suppressed and these transcripts are stabilized, whereas cleavage of leaderless cspE mRNA by the unidentified endonuclease is not affected. Overall, our data suggest that ribosome-unbound S1 may inhibit translation and that part of the Escherichia coli ribosomes may actually lack S1.


Assuntos
Proteínas de Escherichia coli/metabolismo , Biossíntese de Proteínas , Estabilidade de RNA , RNA Mensageiro/metabolismo , Proteínas Ribossômicas/metabolismo , Regiões 5' não Traduzidas , Endorribonucleases/antagonistas & inibidores , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Choque Térmico/genética , RNA Mensageiro/análise , Ribossomos/metabolismo
3.
PLoS One ; 7(5): e36553, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22590564

RESUMO

Pseudomonas aeruginosa is a highly adaptable bacterium that thrives in a broad range of ecological niches and can infect multiple hosts as diverse as plants, nematodes and mammals. In humans, it is an important opportunistic pathogen. This wide adaptability correlates with its broad genetic diversity. In this study, we used a deep-sequencing approach to explore the complement of small RNAs (sRNAs) in P. aeruginosa as the number of such regulatory molecules previously identified in this organism is relatively low, considering its genome size, phenotypic diversity and adaptability. We have performed a comparative analysis of PAO1 and PA14 strains which share the same host range but differ in virulence, PA14 being considerably more virulent in several model organisms. Altogether, we have identified more than 150 novel candidate sRNAs and validated a third of them by Northern blotting. Interestingly, a number of these novel sRNAs are strain-specific or showed strain-specific expression, strongly suggesting that they could be involved in determining specific phenotypic traits.


Assuntos
Genoma Bacteriano , Pseudomonas aeruginosa/genética , RNA Bacteriano/genética , Pseudomonas aeruginosa/patogenicidade , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA