Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Mol Imaging ; 2021: 6641397, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34194286

RESUMO

Background: Human papillomavirus- (HPV-) associated oropharyngeal squamous cell carcinomas (OPSCCs) are clinically and pathologically distinct from HPV-negative tumors. Here, we explore whether HPV affects functional biomarkers, including γH2AX, RAD51, and PARP1. Moreover, the role of [18F]PARPi as a broadly applicable imaging tool for head and neck carcinomas is investigated. Methods: HPV-positive and HPV-negative cell lines were used to evaluate the γH2AX, RAD51, and PARP1 expression with immunoblotting and immunofluorescence. Effects of external beam ionizing radiation were investigated in vitro, and survival was investigated via colony-formation assay. [18F]PARPi uptake experiments were performed on HPV-negative and HPV-positive cell lines to quantify PARP1 expression. PARP1 IHC and γH2AX foci were quantified using patient-derived oropharyngeal tumor specimens. Results: Differences in DNA repair were detected, showing higher RAD51 and γH2AX expression in HPV-positive cell lines. Clonogenic assays confirm HPV-positive cell lines to be significantly more radiosensitive. PARP1 expression levels were similar, irrespective of HPV status. Consequently, [18F]PARPi uptake assays demonstrated that this tracer is internalized in cell lines independently from their HPV status. Conclusion: The HPV status, often used clinically to stratify patients, did not affect PARP1 levels, suggesting that PARP imaging can be performed in both HPV-positive and HPV-negative patients. This study confirms that the PET imaging agent [18F]PARPi could serve as a general clinical tool for oropharyngeal cancer patients.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Orofaríngeas , Infecções por Papillomavirus , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Humanos , Neoplasias Orofaríngeas/diagnóstico por imagem , Papillomaviridae , Infecções por Papillomavirus/diagnóstico por imagem
2.
Eur J Nucl Med Mol Imaging ; 48(11): 3618-3630, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33954826

RESUMO

BACKGROUND: Visual inspection and biopsy is the current standard of care for oral cancer diagnosis, but is subject to misinterpretation and consequently to misdiagnosis. Topically applied PARPi-FL is a molecularly specific, fluorescent contrast-based approach that may fulfill the unmet need for a simple, in vivo, non-invasive, cost-effective, point-of-care method for the early diagnosis of oral cancer. Here, we present results from a phase I safety and feasibility study on fluorescent, topically applied PARPi-FL. Twelve patients with a histologically proven oral squamous cell carcinoma (OSCC) gargled a PARPi-FL solution for 60 s (15 mL, 100 nM, 250 nM, 500 nM, or 1000 nM), followed by gargling a clearing solution for 60 s. Fluorescence measurements of the lesion and surrounding oral mucosa were taken before PARPi-FL application, after PARPi-FL application, and after clearing. Blood pressure, oxygen levels, clinical chemistry, and CBC were obtained before and after tracer administration. RESULTS: PARPi-FL was well-tolerated by all patients without any safety concerns. When analyzing the fluorescence signal, all malignant lesions showed a significant differential in contrast after administration of PARPi-FL, with the highest increase occurring at the highest dose level (1000 nM), where all patients had a tumor-to-margin fluorescence signal ratio of >3. A clearing step was essential to increase signal specificity, as it clears unbound PARPi-FL trapped in normal anatomical structures. PARPi-FL tumor cell specificity was confirmed by ex vivo tabletop confocal microscopy. We have demonstrated that the fluorescence signal arose from the nuclei of tumor cells, endorsing our macroscopic findings. CONCLUSIONS: A PARPi-FL swish & spit solution is a rapid and non-invasive diagnostic tool that preferentially localizes fluorescent contrast to OSCC. This technique holds promise for the early detection of OSCC based on in vivo optical evaluation and targeted biopsy of suspicious lesions in the oral cavity. TRIAL REGISTRATION: Clinicaltrials.gov -NCT03085147, registered on March 21st, 2017.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Bucais , Carcinoma de Células Escamosas/diagnóstico por imagem , Corantes Fluorescentes , Humanos , Neoplasias Bucais/diagnóstico por imagem , Poli(ADP-Ribose) Polimerase-1
3.
Mol Pharm ; 18(3): 940-951, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33404254

RESUMO

Almost 17 million Americans have a history of cancer, a number expected to reach over 22 million by 2030. Cancer patients often undergo chemotherapy in the form of antineoplastic agents such as cis-platin and paclitaxel. Though effective, these agents can induce debilitating side effects; the most common neurotoxic effect, chemotherapy-induced peripheral neuropathy (CIPN), can endure long after treatment ends. Despite the widespread and chronic nature of the dysfunction, no tools exist to quantitatively measure chemotherapy-induced peripheral neuropathy. Such a tool would not only benefit patients but their stratification could also save significant financial and social costs associated with neuropathic pain. In our first step toward addressing this unmet clinical need, we explored a novel dual approach to localize peripheral nerves: Cerenkov luminescence imaging (CLI) and fluorescence imaging (FI). Our approach revolves around the targeting and imaging of voltage-gated sodium channel subtype NaV1.7, highly expressed in peripheral nerves from both harvested human and mouse tissues. For the first time, we show that Hsp1a, a radiolabeled NaV1.7-selective peptide isolated from Homoeomma spec. Peru, can serve as a targeted vector for delivering a radioactive sensor to the peripheral nervous system. In situ, we observe high signal-to-noise ratios in the sciatic nerves of animals injected with fluorescently labeled Hsp1a and radiolabeled Hsp1a. Moreover, confocal microscopy on fresh nerve tissue shows the same high ratios of fluorescence, corroborating our in vivo results. This study indicates that fluorescently labeled and radiolabeled Hsp1a tracers could be used to identify and demarcate nerves in a clinical setting.


Assuntos
Doenças do Sistema Nervoso Periférico/diagnóstico por imagem , Porfirinas/química , Animais , Antineoplásicos/efeitos adversos , Feminino , Fluorescência , Humanos , Camundongos , Camundongos Nus , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Nervo Isquiático/diagnóstico por imagem , Nervo Isquiático/efeitos dos fármacos
4.
Bioconjug Chem ; 30(11): 2879-2888, 2019 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-31647222

RESUMO

Twenty million Americans suffer from peripheral nerve injury caused by trauma and medical disorders, resulting in a broad spectrum of potentially debilitating side effects. In one out of four cases, patients identify surgery as the root cause of their nerve injury. Particularly during tumor resections or after traumatic injuries, tissue distortion and poor visibility can challenge a surgeon's ability to precisely locate and preserve peripheral nerves. Intuitively, surgical outcomes would improve tremendously if nerves could be highlighted using an exogeneous contrast agent. In clinical practice, however, the current standard of care-visual examination and palpation-remains unchanged. To address this unmet clinical need, we explored the expression of voltage-gated sodium channel Nav1.7 as an intraoperative marker for the peripheral nervous system. We show that expression of Nav1.7 is high in peripheral nerves harvested from both human and mouse tissue. We further show that modification of a Nav1.7-selective peptide, Hsp1a, can serve as a targeted vector for delivering a fluorescent sensor to the peripheral nervous system. Ex vivo, we observe a high signal-to-noise ratio for fluorescently labeled Hsp1a in both histologically prepared and fresh tissue. Using a surgical fluorescent microscope, we show in a simulated clinical scenario that the identification of mouse sciatic nerves is possible, suggesting that fluorescently labeled Hsp1a tracers could be used to discriminate nerves from their surrounding tissues in a routine clinical setting.


Assuntos
Miniproteínas Nó de Cistina/metabolismo , Fluorescência , Imagem Molecular/métodos , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo , Fragmentos de Peptídeos/farmacologia , Nervos Periféricos/metabolismo , Animais , Feminino , Humanos , Camundongos , Camundongos Nus , Canal de Sódio Disparado por Voltagem NAV1.7/química , Fragmentos de Peptídeos/química , Nervos Periféricos/efeitos dos fármacos
5.
J Nucl Med ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38960711

RESUMO

Despite the recent advances in understanding the mechanisms of olfaction, no tools are currently available to noninvasively identify loss of smell. Because of the substantial increase in patients presenting with coronavirus disease 2019-related loss of smell, the pandemic has highlighted the urgent need to develop quantitative methods. Methods: Our group investigated the use of a novel fluorescent probe named Tsp1a-IR800P as a tool to diagnose loss of smell. Tsp1a-IR800P targets sodium channel 1.7, which plays a critical role in olfaction by aiding the signal propagation to the olfactory bulb. Results: Intuitively, we have identified that conditions leading to loss of smell, including chronic inflammation and coronavirus disease 2019, correlate with the downregulation of sodium channel 1.7 expression in the olfactory epithelium, both at the transcript and at the protein levels. We demonstrated that lower Tsp1a-IR800P fluorescence emissions significantly correlate with loss of smell in live animals-thus representing a potential tool for its semiquantitative assessment. Currently available methods rely on delayed subjective behavioral studies. Conclusion: This method could aid in significantly improving preclinical and clinical studies by providing a way to objectively diagnose loss of smell and therefore aid the development of therapeutic interventions.

6.
Clin Cancer Res ; 30(11): 2486-2496, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38526414

RESUMO

PURPOSE: We investigated reflectance confocal microscopy (RCM) as a possible noninvasive approach for the diagnosis of cancer and real-time assessment of surgical margins. EXPERIMENTAL DESIGN: In a phase I study on 20 patients, we established the RCM imaging morphologic features that distinguish oral squamous cell carcinoma (OSCC) from normal tissue with a newly developed intraoral RCM probe. Our subsequent phase II prospective double-blinded study in 60 patients tested the diagnostic accuracy of RCM against histopathology. Five RCM videos from the tumor and five from normal surrounding mucosa were collected on each patient, followed by a 3-mm punch biopsy of the imaged area. An experienced RCM reader, who was blinded to biopsy location and histologic diagnosis, examined the videos from both regions and classified each as "tumor" or "not tumor" based on RCM features established in phase I. Hematoxylin and eosin slides from the biopsies were read by a pathologist who was blinded to RCM results. Using histology as the gold standard, we calculated the sensitivity and specificity of RCM. RESULTS: We report a high agreement between the blinded readers (95% for normal tissue and 81.7% for tumors), high specificity (98.3%) and negative predictive values (96.6%) for normal tissue identification, and high sensitivity (90%) and positive predictive values (88.2%) for tumor detection. CONCLUSIONS: RCM imaging is a promising technology for noninvasive in vivo diagnosis of OSCC and for real-time intraoperative evaluation of mucosal surgical margins. Its inherent constraint, however, stems from the diminished capability to evaluate structures located at more substantial depths within the tissue.


Assuntos
Microscopia Confocal , Neoplasias Bucais , Humanos , Neoplasias Bucais/patologia , Neoplasias Bucais/diagnóstico por imagem , Neoplasias Bucais/diagnóstico , Neoplasias Bucais/cirurgia , Microscopia Confocal/métodos , Feminino , Masculino , Estudos Prospectivos , Pessoa de Meia-Idade , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/diagnóstico por imagem , Carcinoma de Células Escamosas/diagnóstico , Carcinoma de Células Escamosas/cirurgia , Idoso , Adulto , Método Duplo-Cego , Biópsia , Mucosa Bucal/patologia , Mucosa Bucal/diagnóstico por imagem , Sensibilidade e Especificidade
7.
Front Oncol ; 13: 1209261, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37469413

RESUMO

Introduction: Scanned fibre endomicroscopes are full point-scanning confocal microscopes with submicron lateral resolution with an optical slice thickness thin enough to isolate individual cell layers, allow active positioning of the optical slice in the z-axis and collection of megapixel images. Here we present descriptive findings and a brief atlas of an acquisition and annotation protocol high resolution in vivo capture of oral mucosal pathology including oral squamous cell carcinoma and dysplasia using a fluorescence scanned fibre endomicroscope with 3 topical fluorescent imaging agents: fluorescein, acriflavine and PARPi-FL. Methods: Digital biopsy was successfully performed via an acquisition protocol in seventy-one patients presenting for investigation of oral mucosal abnormalities using a miniaturized, handheld scanned fibre endoscope. Multiple imaging agents were utilized and multiple time points sampled. Fifty-nine patients had a matched histopathology correlating in location with imaging. The images were annotated back to macrographic location using a purpose-built software, MouthMap™. Results: Acquisition and annotation of cellular level resolved images was demonstrated with all 3 topical agents. Descriptive observations between clinically or histologically normal oral mucosa showed regular intranuclear distance, a regular nuclear profile and fluorescent homogeneity. This was dependent on the intraoral location and type of epithelium being observed. Key features of malignancy were a loss of intranuclear distance, disordered nuclear clustering and irregular nuclear fluorescence intensity and size. Perinuclear fluorescent granules were seen in the absence of irregular nuclear features in lichenoid inflammation. Discussion: High resolution oral biopsy allows for painless and rapid capture of multiple mucosal sites, resulting in more data points to increase diagnostic precision. High resolution digital micrographs can be easily compared serially across multiple time points utilizing an annotation software. In the present study we have demonstrated realization of a high-resolution digital biopsy protocol of the oral mucosa for utility in the diagnosis of oral cancer and precancer..

8.
Mol Imaging Biol ; 25(2): 294-302, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-35882728

RESUMO

PARPi-FL is a molecularly specific fluorescent agent that targets poly ADP-ribose polymerase 1, a DNA repair enzyme overexpressed in the nuclei of tumor cells. This imaging agent is being investigated in a clinical trial (NCT03085147) for the detection of oral cancer. The PARPi-FL mouthwash formulation currently being used in the phase I/II clinical trial comprises 1,000 nM of PARPi-FL dissolved first in 4.5 ml of polyethylene glycol (PEG) 300 and then in 9.5 ml of water. This formulation requires a 2-step process that can be cumbersome for routine clinical use. To minimize errors and simplify the formulation process, we have developed a new one-step formulation, which requires only the direct addition of water into a vial containing a mixture of the PARPi-FL and PEG 3350, which is also a powder. In a series of analytical and preclinical studies, we demonstrate that the new formulation of PARPi-FL is stable over 365 days, sustains its characteristics, and performs similar to the previous formulation. Moving forward, the new formulation of the PARPi-FL will be used for patients accrued in the phase II clinical trial.


Assuntos
Neoplasias Bucais , Inibidores de Poli(ADP-Ribose) Polimerases , Humanos , Polietilenoglicóis
9.
bioRxiv ; 2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36482968

RESUMO

The sense of smell (olfaction) is one of the most important senses for animals including humans. Despite significant advances in the understanding mechanism of olfaction, currently, there are no objective non-invasive methods that can identify loss of smell. Covid-19-related loss of smell has highlighted the need to develop methods that can identify loss of olfaction. Voltage-gated sodium channel 1.7 (NaV1.7) plays a critical role in olfaction by aiding the signal propagation to the olfactory bulb. We have identified several conditions such as chronic inflammation and viral infections such as Covid-19 that lead to loss of smell correlate with downregulation of NaV1.7 expression at transcript and protein levels in the olfactory epithelium. Leveraging this knowledge, we have developed a novel fluorescent probe Tsp1a-IR800 that targets NaV1.7. Using fluorescence imaging we can objectively measure the loss of sense of smell in live animals non-invasively. We also demonstrate that our non-invasive method is semiquantitative because the loss of fluorescence intensity correlates with the level of smell loss. Our results indicate, that our probe Tsp1a-IR800, can objectively diagnose anosmia in animal and human subjects using infrared fluorescence. We believe this method to non-invasively diagnose loss of smell objectively is a significant advancement in relation to current methods that rely on highly subjective behavioral studies and can aid in studying olfaction loss and the development of therapeutic interventions.

10.
ACS Pharmacol Transl Sci ; 4(4): 1362-1378, 2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34423271

RESUMO

The human nociceptor-specific voltage-gated sodium channel 1.7 (hNaV1.7) is critical for sensing various types of somatic pain, but it appears not to play a primary role in acute visceral pain. However, its role in chronic visceral pain remains to be determined. We used assay-guided fractionation to isolate a novel hNaV1.7 inhibitor, Tsp1a, from tarantula venom. Tsp1a is 28-residue peptide that potently inhibits hNaV1.7 (IC50 = 10 nM), with greater than 100-fold selectivity over hNaV1.3-hNaV1.6, 45-fold selectivity over hNaV1.1, and 24-fold selectivity over hNaV1.2. Tsp1a is a gating modifier that inhibits NaV1.7 by inducing a hyperpolarizing shift in the voltage-dependence of channel inactivation and slowing recovery from fast inactivation. NMR studies revealed that Tsp1a adopts a classical knottin fold, and like many knottin peptides, it is exceptionally stable in human serum. Remarkably, intracolonic administration of Tsp1a completely reversed chronic visceral hypersensitivity in a mouse model of irritable bowel syndrome. The ability of Tsp1a to reduce visceral hypersensitivity in a model of irritable bowel syndrome suggests that pharmacological inhibition of hNaV1.7 at peripheral sensory nerve endings might be a viable approach for eliciting analgesia in patients suffering from chronic visceral pain.

11.
Nucl Med Biol ; 84-85: 80-87, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32135475

RESUMO

OBJECTIVES: The evaluation of disease extent and post-therapy surveillance of head and neck cancer using 2-deoxy-2-[18F]fluoro-d-glucose ([18F]FDG) PET is often complicated by physiological uptake in normal tissues of the head and neck region, especially after surgery or radiotherapy. However, irrespective of low positive predictive values, [18F]FDG PET remains the standard of care to stage the disease and monitor recurrences. Here, we report the preclinical use of a targeted poly (ADP-ribose) polymerase1 (PARP1) binding PET tracer, fluorine-18 labeled poly (ADP-ribose) polymerase1 inhibitor ([18F]PARPi), as a potential alternative with greater specificity. METHODS: Using an orthotopic xenograft mouse model injected with either FaDu or Cal 27 (human squamous cell carcinoma cell lines) we performed PET/CT scans with the 2 tracers and compared the results. Gamma counts and autoradiography were also assessed and correlated with histology. RESULTS: The average retained activity of [18F]PARPi across cell lines in tumor-bearing tongues was 0.9 ±â€¯0.3%ID/g, 4.1 times higher than in control (0.2 ±â€¯0.04%ID/g). Autoradiography and histology confirmed that the activity arose almost exclusively from the tumor areas, with a signal/normal tissue around a ratio of 42.9 ±â€¯21.4. In vivo, [18F]PARPi-PET allowed delineation of tumor from healthy tissue (p < .005), whereas [18F]FDG failed to do so (p = .209). CONCLUSIONS AND IMPLICATIONS FOR PATIENT CARE: We demonstrate that [18F]PARPi is more specific to tongue tumor tissue than [18F]FDG. [18F]PARPi PET allows for the straightforward delineation of oral cancer in mouse models, suggesting that clinical translation could result in improved imaging of head and neck cancer when compared to [18F]FDG.


Assuntos
Inibidores Enzimáticos/química , Radioisótopos de Flúor/química , Fluordesoxiglucose F18 , Neoplasias Bucais/diagnóstico por imagem , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Tomografia por Emissão de Pósitrons/métodos , Animais , Linhagem Celular Tumoral , Transformação Celular Neoplásica , Inibidores Enzimáticos/farmacologia , Humanos , Marcação por Isótopo , Camundongos , Radioquímica , Razão Sinal-Ruído
12.
Clin Cancer Res ; 26(12): 2871-2881, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32066626

RESUMO

PURPOSE: Glioblastoma multiforme is a highly aggressive form of brain cancer whose location, tendency to infiltrate healthy surrounding tissue, and heterogeneity significantly limit survival, with scant progress having been made in recent decades. EXPERIMENTAL DESIGN: 123I-MAPi (Iodine-123 Meitner-Auger PARP1 inhibitor) is a precise therapeutic tool composed of a PARP1 inhibitor radiolabeled with an Auger- and gamma-emitting iodine isotope. Here, the PARP inhibitor, which binds to the DNA repair enzyme PARP1, specifically targets cancer cells, sparing healthy tissue, and carries a radioactive payload within reach of the cancer cells' DNA. RESULTS: The high relative biological efficacy of Auger electrons within their short range of action is leveraged to inflict DNA damage and cell death with high precision. The gamma ray emission of 123I-MAPi allows for the imaging of tumor progression and therapy response, and for patient dosimetry calculation. Here we demonstrated the efficacy and specificity of this small-molecule radiotheranostic in a complex preclinical model. In vitro and in vivo studies demonstrate high tumor uptake and a prolonged survival in mice treated with 123I-MAPi when compared with vehicle controls. Different methods of drug delivery were investigated to develop this technology for clinical applications, including convection enhanced delivery and intrathecal injection. CONCLUSIONS: Taken together, these results represent the first full characterization of an Auger-emitting PARP inhibitor which demonstrate a survival benefit in mouse models of GBM and confirm the high potential of 123I-MAPi for clinical translation.


Assuntos
Neoplasias Encefálicas/radioterapia , Glioblastoma/radioterapia , Radioisótopos do Iodo/uso terapêutico , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Radioterapia/métodos , Animais , Apoptose , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Proliferação de Células , Feminino , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Humanos , Camundongos , Camundongos Nus , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Sci Rep ; 10(1): 11175, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32636416

RESUMO

Complete removal and negative margins are the goal of any surgical resection of primary oral cavity carcinoma. Current approaches to determine tumor boundaries rely heavily on surgeons' expertise, and final histopathological reports are usually only available days after surgery, precluding contemporaneous re-assessment of positive margins. Intraoperative optical imaging could address this unmet clinical need. Using mouse models of oral cavity carcinoma, we demonstrated that PARPi-FL, a fluorescent PARP inhibitor targeting the enzyme PARP1/2, can delineate oral cancer and accurately identify positive margins, both macroscopically and at cellular resolution. PARPi-FL also allowed identification of compromised margins based on fluorescence hotspots, which were not seen in margin-negative resections and control tongues. PARPi-FL was further able to differentiate tumor from low-grade dysplasia. Intravenous injection of PARPi-FL has significant potential for clinical translation and could aid surgeons in assessing oral cancer margins in vivo.


Assuntos
Carcinoma/cirurgia , Neoplasias Bucais/cirurgia , Cirurgia Assistida por Computador/métodos , Animais , Linhagem Celular Tumoral , Corantes Fluorescentes/farmacocinética , Margens de Excisão , Camundongos , Camundongos Endogâmicos C57BL , Inibidores de Poli(ADP-Ribose) Polimerases/farmacocinética , Língua/metabolismo , Língua/patologia , Língua/cirurgia
14.
Neurooncol Adv ; 2(1): vdaa119, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33392502

RESUMO

BACKGROUND: We report preclinical and first-in-human-brain-cancer data using a targeted poly (ADP-ribose) polymerase 1 (PARP1) binding PET tracer, [18F]PARPi, as a diagnostic tool to differentiate between brain cancers and treatment-related changes. METHODS: We applied a glioma model in p53-deficient nestin/tv-a mice, which were injected with [18F]PARPi and then sacrificed 1 h post-injection for brain examination. We also prospectively enrolled patients with brain cancers to undergo dynamic [18F]PARPi acquisition on a dedicated positron emission tomography/magnetic resonance (PET/MR) scanner. Lesion diagnosis was established by pathology when available or by Response Assessment in Neuro-Oncology (RANO) or RANO-BM response criteria. Resected tissue also underwent PARPi-FL staining and PARP1 immunohistochemistry. RESULTS: In a preclinical mouse model, we illustrated that [18F]PARPi crossed the blood-brain barrier and specifically bound to PARP1 overexpressed in cancer cell nuclei. In humans, we demonstrated high [18F]PARPi uptake on PET/MR in active brain cancers and low uptake in treatment-related changes independent of blood-brain barrier disruption. Immunohistochemistry results confirmed higher PARP1 expression in cancerous than in noncancerous tissue. Specificity was also corroborated by blocking fluorescent tracer uptake with an excess unlabeled PARP inhibitor in patient cancer biospecimen. CONCLUSIONS: Although larger studies are necessary to confirm and further explore this tracer, we describe the promising performance of [18F]PARPi as a diagnostic tool to evaluate patients with brain cancers and possible treatment-related changes.

15.
Nat Biomed Eng ; 4(3): 272-285, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32165735

RESUMO

For oral, oropharyngeal and oesophageal cancer, the early detection of tumours and of residual tumour after surgery are prognostic factors of recurrence rates and patient survival. Here, we report the validation, in animal models and a human, of the use of a previously described fluorescently labelled small-molecule inhibitor of the DNA repair enzyme poly(ADP-ribose) polymerase 1 (PARP1) for the detection of cancers of the oral cavity, pharynx and oesophagus. We show that the fluorescent contrast agent can be used to quantify the expression levels of PARP1 and to detect oral, oropharyngeal and oesophageal tumours in mice, pigs and fresh human biospecimens when delivered topically or intravenously. The fluorescent PARP1 inhibitor can also detect oral carcinoma in a patient when applied as a mouthwash, and discriminate between fresh biopsied samples of the oral tumour and the surgical resection margin with more than 95% sensitivity and specificity. The PARP1 inhibitor could serve as the basis of a rapid and sensitive assay for the early detection and for the surgical-margin assessment of epithelial cancers of the upper intestinal tract.


Assuntos
Neoplasias Esofágicas/diagnóstico por imagem , Neoplasias Orofaríngeas/diagnóstico por imagem , Poli(ADP-Ribose) Polimerase-1/efeitos dos fármacos , Poli(ADP-Ribose) Polimerase-1/isolamento & purificação , Poli(ADP-Ribose) Polimerase-1/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Animais , Biomarcadores Tumorais/isolamento & purificação , Biomarcadores Tumorais/metabolismo , Modelos Animais de Doenças , Neoplasias Esofágicas/patologia , Feminino , Xenoenxertos/diagnóstico por imagem , Humanos , Masculino , Camundongos , Neoplasias Orofaríngeas/patologia , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA