Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Microbiol ; 121(4): 798-813, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38284496

RESUMO

Small multidrug resistance transporters efflux toxic compounds from bacteria and are a minimal system to understand multidrug transport. Most previous studies have focused on EmrE, the model SMR from Escherichia coli, finding that EmrE has a broader substrate profile than previously thought and that EmrE may perform multiple types of transport, resulting in substrate-dependent resistance or susceptibility. Here, we performed a broad screen to identify potential substrates of three other SMRs: PAsmr from Pseudomonas aeruginosa; FTsmr from Francisella tularensis; and SAsmr from Staphylococcus aureus. This screen tested metabolic differences in E. coli expressing each transporter versus an inactive mutant, for a clean comparison of sequence and substrate-specific differences in transporter function, and identified many substrates for each transporter. In general, resistance compounds were charged, and susceptibility substrates were uncharged, but hydrophobicity was not correlated with phenotype. Two resistance hits and two susceptibility hits were validated via growth assays and IC50 calculations. Susceptibility is proposed to occur via substrate-gated proton leak, and the addition of bicarbonate antagonizes the susceptibility phenotype, consistent with this hypothesis.


Assuntos
Proteínas de Escherichia coli , Francisella tularensis , Escherichia coli/genética , Francisella tularensis/metabolismo , Pseudomonas aeruginosa/metabolismo , Staphylococcus aureus/metabolismo , Proteínas de Escherichia coli/metabolismo , Antiporters/genética , Proteínas de Membrana Transportadoras/metabolismo , Resistência a Múltiplos Medicamentos
2.
J Bacteriol ; : e0015124, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39258918

RESUMO

Small multidrug resistance (SMR) transporters are key players in the defense of multidrug-resistant pathogens to toxins and other homeostasis-perturbing compounds. However, recent evidence demonstrates that EmrE, an SMR from Escherichia coli and a model for understanding transport, can also induce susceptibility to some compounds by drug-gated proton leak. This runs down the ∆pH component of the proton-motive force (PMF), reducing the viability of the affected bacteria. Proton leak may provide an unexplored drug target distinct from the targets of most known antibiotics. Activating proton leak requires an SMR to be merely present, rather than be the primary resistance mechanism, and dissipates the energy source for many other efflux pumps. PAsmr, an EmrE homolog from Pseudomonas aeruginosa, transports many EmrE substrates in cells and purified systems. We hypothesized that PAsmr, like EmrE, may confer susceptibility to some compounds via drug-gated proton leak. Growth assays of E. coli expressing PAsmr displayed substrate-dependent resistance and susceptibility phenotypes, and in vitro solid-supported membrane electrophysiology experiments revealed that PAsmr performs both antiport and substrate-gated proton uniport, demonstrating the same functional promiscuity observed in EmrE. Growth assays of P. aeruginosa strain PA14 demonstrated that PAsmr contributes resistance to some antimicrobial compounds, but no growth defect is observed with susceptibility substrates, suggesting P. aeruginosa can compensate for the proton leak occurring through PAsmr. These phenotypic differences between P. aeruginosa and E. coli advance our understanding of the underlying resistance mechanisms in P. aeruginosa and prompt further investigation into the role that SMRs play in antibiotic resistance in pathogens. IMPORTANCE: Small multidrug resistance (SMR) transporters are a class of efflux pumps found in many pathogens, although their contributions to antibiotic resistance are not fully understood. We hypothesize that these transporters may confer not only resistance but also susceptibility, by dissipating the proton-motive force. This means to use an SMR transporter as a target; it merely needs to be present (as opposed to being the primary resistance mechanism). Here, we test this hypothesis with an SMR transporter found in Pseudomonas aeruginosa and find that it can perform both antiport (conferring resistance) and substrate-gated proton leak. Proton leak is detrimental to growth in Escherichia coli but not P. aeruginosa, suggesting that P. aeruginosa responds differently to or can altogether prevent ∆pH dissipation.

3.
bioRxiv ; 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37808795

RESUMO

Small Multidrug Resistance (SMR) transporters are key players in the defense of multidrug-resistant pathogens to toxins and other homeostasis-perturbing compounds. However, recent evidence demonstrates that EmrE, an SMR from Escherichia coli and a model for understanding transport, can also induce susceptibility to some compounds by drug-gated proton leak. This runs down the ∆pH component of the Proton Motive Force (PMF), reducing viability of the affected bacteria. Proton leak may provide an unexplored drug target distinct from the targets of most known antibiotics. Activating proton leak requires an SMR to be merely present, rather than be the primary resistance mechanism, and dissipates the energy source for many other efflux pumps. PAsmr, an EmrE homolog from P. aeruginosa, transports many EmrE substrates in cells and purified systems. We hypothesized that PAsmr, like EmrE, may confer susceptibility to some compounds via drug-gated proton leak. Growth assays of E. coli expressing PAsmr displayed substrate-dependent resistance and susceptibility phenotypes, and in vitro solid-supported membrane electrophysiology experiments revealed that PAsmr performs both antiport and substrate-gated proton uniport, demonstrating the same functional promiscuity observed in EmrE. Growth assays of P. aeruginosa strain PA14 demonstrated that PAsmr contributes resistance to some antimicrobial compounds, but no growth defect is observed with susceptibility substrates, suggesting P. aeruginosa can compensate for the proton leak occurring through PAsmr. These phenotypic differences between P. aeruginosa and E. coli advance our understanding of underlying resistance mechanisms in P. aeruginosa and prompt further investigation into the role that SMRs play in antibiotic resistance in pathogens.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA